
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 1

Which Commits Can Be CI Skipped?
Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, Senior Member, IEEE, Juergen Rilling

Abstract—Continuous Integration (CI) frameworks such as Travis CI, automatically build and run tests whenever a new commit is
submitted/pushed. Although there are many advantages in using CI, e.g., speeding up the release cycle and automating the test
execution process, it has been noted that the CI process can take a very long time to complete. One of the possible reasons for such
delays is the fact that some commits (e.g., changes to readme files) unnecessarily kick off the CI process.
Therefore, the goal of this paper is to automate the process of determining which commits can be CI skipped. We start by examining
the commits of 58 Java projects and identify commits that were explicitly CI skipped by developers. Based on the manual investigation
of 1,813 explicitly CI skipped commits, we first devise an initial model of a CI skipped commit and use this model to propose a
rule-based technique that automatically identifies commits that should be CI skipped. To evaluate the rule-based technique, we perform
a study on unseen datasets extracted from ten projects and show that the devised rule-based technique is able to detect and label CI
skip commits, achieving Areas Under the Curve (AUC) values between 0.56 and 0.98 (average of 0.73). Additionally, we show that, on
average, our technique can reduce the number of commits that need to trigger the CI process by 18.16%. We also qualitatively
triangulated our analysis on the importance of skipping the CI process through a survey with 40 developers. The survey results showed
that 75% of the surveyed developers consider it to be nice, important or very important to have a technique that automatically flags CI
skip commits. To operationalize our technique, we develop a publicly available prototype tool, called CI-SKIPPER, that can be
integrated with any git repository and automatically mark commits that can be CI skipped.

Index Terms—Continuous Integration, Travis CI, Build Status, Mining Software Repository.

F

1 INTRODUCTION

CONTINUOUS integration (CI) is becoming increasingly
popular in modern software projects. CI platforms au-

tomate the process of building and testing these projects.
Previous research showed that CI, amongst other things,
increases developers’ productivity and helps improve soft-
ware quality [38]. Due to their many advantages, Hilton et al.
showed that CI is used by both, the open source community
and in industrial software projects [18], [19] and that as
much as 40% of 34,544 of analyzed popular GitHub projects
use CI [19].

Despite CI’s many benefits and wide popularity, it also
has several drawbacks. CI’s process can take a very long
time to complete [26], especially for large projects [8]. This
can be particularly problematic for developers who need
the CI process to complete after each commit. This long
waiting time is mainly due to the fact that the CI process
needs to automatically clone the source code into a clean
virtual machine, set up the required environment, initiate
the build, run the tests and output the result of the build
to the developers after each commit. This waiting time can
affect both, the speed of software development and the
productivity of the developers (Duvall et al. [11], p. 87).

Most of the previous work on CI focused on the study of
its usage and benefits (e.g,. [22], [38]). Other work examined
the reason for failing builds [31], and even tried to predict

• R. Abdalkareem, S. Mujahid and E. Shihab with the Data-driven Analysis
of Software (DAS) Lab at the Department of Computer Science and
Software Engineering, Concordia University, Montreal, Canada.
E-mail: rab abdu,s mujahi, eshihab@encs.concordia.ca

• Juergen Rilling is with the Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada.
E-mail: juergen.rilling@concordia.ca

Manuscript received May 29, 2018; revised August 26, 2018.

the results of the build result [17]. However, very few
studies tried to improve the efficiency of the CI process.
We believe that doing so can reap benefits, especially for
large projects that use CI. Since the CI process is triggered
by commits, we believe that trying to reduce the number
of commits that kick off the CI process will have the biggest
impact (though it is not the only way to do so). Our main ar-
gument is that not every commit needs to trigger the CI process.
For instance, developers may modify a project’s documen-
tations, which causes the CI process to be triggered. Since
such a change does not affect the source code, the result
of the build will not change and kicking off the CI process
is just a waste of resources. Furthermore, in a discussion
channel on Travis CI, many developers argue that the CI
process should not be run on every commit, and Travis CI
developers are asked to provide an advanced mechanism
to automatically CI skip specific commits1. Even though,
Travis CI actually has a built in functionality that allows
developers to skip the CI process for a specific commit, the
challenge of which commit to CI skip remains. As we will
show later, developers often do not leverage this existing CI
skip feature, which indicates that they a) either are unaware
of this feature or b) do not know when a commit can be CI
skipped.

Therefore, the main goal of our work is to automatically
detect and label commits that can be CI skipped. We begin
by studying 1,813 CI skip commits belong to projects from
the TravisTorrent dataset [2], where developers explicitly
skip the build when using Travis CI to understand the
reasons why developers skip build commits. We found that
developers skip the CI process for eight main reasons, of
which five can be automated; changes that touch only doc-

1https://github.com/travis-ci/travis-ci/issues/6301

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 2

umentation files, changes that touch only source code com-
ments, changes that modify the formatting of source code,
changes that touch meta files, and changes that only prepare
the code for release. Based on the automatable reasons, we
propose a rule-based technique, which automatically detects
and labels commits that can be CI skipped.

To examine the effectiveness and potential effort savings
of our proposed technique, we perform an empirical study
using 392 open source Java projects. Our study examines
two research questions RQ1: How effective is our rule-
based technique in detecting CI skip commits? and RQ2:
How much effort can be saved by marking CI skip commits
using our rule-based technique? Our findings show that our
rule-based technique can detect and label CI commits with
an AUC between 0.56 and 0.98 (average of 0.73). Although
these may seem like modest performance numbers, they are
quite favourable given the unbalanced nature of the data
(i.e., only a small portion of the commits can be CI skipped).
Moreover, we find that applying our technique can, on
average, CI skip 18.16% of a project’s commits, amounting
to an average savings of 917 minutes per project.

Moreover, to better understand the importance of the CI
skip technique from developers perspective, we conducted a
survey with 40 developers. Our survey results showed that
75% of the developers believe it would be nice, important
or very important to have a technique that automatically
indicates CI skip commits. Finally, we built a prototype
tool that implements our rule-based technique and make it
publicly available so that developers and the research com-
munity can begin to leverage the benefits of this research
immediately.
Our work makes the following contributions:
• We first qualitatively examine commits that can be CI

skipped. We manually examine more than 1,800 commits
to determine the reasons why developers CI skip com-
mits.

• We propose a rule-based technique that can be used to
automatically detect and label CI skip commits. Our re-
sults show that our technique is effective and can provide
effort savings for software projects.

• We perform a survey with 40 open source developers to
gain an in-depth understanding about the importance of
having a technique to CI skip commits. Developers indi-
cated that they CI skip a commit when they perceive no
change in the build results, saving development time and
computational resources. At the same time, 75% of the
surveyed developers indicate that having an automatic
techniques to CI skip commits would be favourable.

• We build a prototype tool, called CI-SKIPPER, that im-
plements our technique and is publicly available for the
community to use 2.

Paper organization. The rest of the paper is organized as
follows. Section 2 provides background on the CI process,
in particular Travis CI. We detail our data collection and
the dataset used in our study in Section 3. We describe our
approach and the reasons that developers CI skip commits
in Section 4. We present our case study results, detailing the
effectiveness and effort savings of our technique in Section 5.

2http://das.encs.concordia.ca/publications/
which-commits-can-be-ci-skipped/

In Section 6, we present the developers survey about CI skip
commits. The shortcomings of our technique and the use of
source code analysis are discussed in Section 7. Section 8
presents our prototype tool, CI-SKIPPER. The work related
to our study is discussed in Section 9 and the threats to
validity in Section 10. Section 11 concludes the paper.

2 BACKGROUND AND TERMINOLOGY

Since the main goal of our study is to detect commits that
can be CI skipped, it is important first to provide some
background on CI and Travis CI in particular. Travis CI is
an online continuous integration service. When a commit
is pushed to any branch or a pull request is made to a
Git repository, Travis CI starts the continuous integration
process. The pushed commits or pull requests can trigger
a build that is often referred to as a build commit. A build
commit can be triggered on a single commit or a group
of commits, known as a set of changes. In general, the
build commit is supposed to build the project and run any
specified tests, which should pass.

Given that the CI process requires resources, developers
may decide that there is no need to build the project for a
commit (for various reasons). A skipped commit, is a commit
in which a developer explicitly and intentionally requests
the CI process to be bypassed. To skip the CI process in
Travis CI, a developer adds the term [skip ci] or [ci
skip] in the commit message. It is important to note here
that although Travis CI will provide the functionality for
a commit or pull request to be CI skipped, the developer
needs to explicitly add the aforementioned terms in the
commit message.

Once the CI process is triggered with a build commit,
the repository is first cloned into a clean virtual machine.
Then, Travis CI starts the installation phases by installing
all the required dependencies for the project and builds it
and runs associated test cases. Travis CI can be configured
to run multiple jobs (i.,e. n-jobs). A Job corresponds to a
configuration of the building step (i.e., the SDK version or
the DBMS), which helps to reduce the build process time
and to improve the virtual machine utilization.3.

Once the CI process is complete, Travis CI reports its
results, which can be one of four: passed: the project is
successfully built and its tests pass; failed: the project fails
to build or some of its tests did not pass; errored: which
can happen for different reasons, but generally means that
an error occurred in one or more of the CI phases (e.g.,
the installation did not complete or a configuration of the
build system is missing), and/or canceled which means the
CI process was canceled, most likely by the developer or the
release engineer [1].

3 DATA COLLECTION

The goal of our study is to determine the commits that
can be CI skipped. Since to the best of our knowledge, no
other work examined skipped commits, we collected data
of projects that skip some of their commits, which we use
later to derive rules that can be used to skip commits. In this
section, we detail our data collection and processing steps.

3https://docs.travis-ci.com/user/speeding-up-the-build/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 3

TABLE 1
Percentage of Build Results in All the Java Projects in the TravisTorrent

Dataset.

Build Result Min. Median(x̃) Mean(µ) Max.

Passed 0.00% 84.13% 76.37% 100%
Failed 0.00% 7.89% 13.86% 100%
Errored 0.00% 4.87% 9.58% 90.09%
Canceled 0.00% 0.00% 0.19% 5.45%

3.1 The TravisTorrent Dataset

The main data source for our study is the TravisTorrent
dataset [2]. TravisTorrent is a publicly available data set that
synthesizes data from Travis CI4 and their corresponding
GitHub repositories. We obtained the TravisTorrent data
dump (released December 06, 2016) in SQL format. The
dataset combines meta-data from three sources, the git
version control system, the GitHub website, and Travis CI
services [1].

Since we are interested in non-toy projects, and similar to
prior research [21], we use a number of criteria to make sure
we study real projects. We used the TravisTorrent dataset
which identifies projects with at least 50 Travis CI builds
and a minimum of 10 watchers on GitHub [2]. Based on
this filtering process, TravisTorrent dataset contains 1,283
open source projects, made up of 886 ruby projects, 393
Java projects, and 4 JavaScript projects. In this paper, we
focused on the study of the 393 projects written in Java.
We chose to focus on projects written in Java, since 1)
we manually examined each project and wanted a dataset
that is sufficiently large, but at the same time manageable
in size to analyze manually, 2) Java is a well-understood
language that the authors have expertise in, hence, giving us
confidence in the manual analysis, and 3) Java is one of the
most popular programming languages on GitHub [38]. That
said, it is important to note that our study is not language
dependent and our approach & technique can be applied
on projects written in any programming language.For our
study, we cloned all 393 open source Java projects provided
in the TravisTorrent dataset and identified the date when
Travis CI was introduced to each project. We did so by
determining the commit date on which the .travis.yml5

file was first added. We could not determine the date for one
project since its history was modified (i.e., the developers
of the project rebased many of the commits). We therefore
excluded this project from our dataset, leaving us with
a remaining 392 projects. We analyze the commit history
of all the branches for each project and extracted various
metrics, which include, 1) the type of change performed
in each commit (i.e., does the commit modify source code,
modify the formatting of the source code, or modify source
code comments); 2) the type of file(s) modified in each
commit (provided by their file extensions); and 3) identified
the commits that contain the keyword [ci skip] or its
variation [skip ci] in its commit message.

4https://travis-ci.org/
5The .travis.yml file is the configuration file used to configure

Travis CI in a project.

TABLE 2
The Selected Ten Open Source Java Projects used as a Testing

Dataset.

Project #Commits§ %Skipped Commits

TracEE Context-Log 216 29.63
SAX 372 23.66
Trane.io Future 247 18.62
Solr-iso639-filter 408 41.42
jMotif-GI 345 12.17
GrammarViz 417 13.67
Parallec 129 56.59
CandyBar 242 69.01
SteVe 298 19.46
Mechanical Tsar 388 34.54

Average 306.20 31.88
Median 321.50 26.65
§Number of commits after the introduction of Travis CI
service to the project.

3.2 Aggregating the Travis CI Results
The TravisTorrent dataset organizes the build results at the
job level. Every job is associated with a build commit, a set of
changes and is associated with other meta data (e.g,. build
states, number of test runs). In total, the dataset contains
456,793 jobs that come from 243,811 build commits. Each
project has on average 620.4 builds (median = 296). To come
up with one result for a build we aggregate the results of
all jobs related to a build and provide one status using the
build-id in the TravisTorrent dataset. Since several jobs may
belong to the same build commit that can have different
statuses, we abstracted the job data to the build commit level
in order to avoid any ambiguity as to whether the build
commit passed or failed. To do so, we looked at the status of
every job related to a build commit and if any of them failed
during the build, we considered the whole build commit as
failed. Also, the same build commit may trigger the build on
Travis CI more than one time and could result in different
statuses. We found 26,965 duplicated builds with the same
build-id and we eliminated these build commits.

Table 1 shows the summary statistics for each of the
different build outcomes of all the Java projects in our
dataset. We observe that the majority of the builds pass
(median 84.13%), and some fail, error, and/or are canceled
(medians 7.89%, 4.87%, and 0.0%, respectively)6.

Finally, since the goal of this study is to examine the
commits that can be skipped, we only focus on builds that
have a pass or fail status. Thus, we eliminate all builds
commits that have a status of Error or Cancel from our
analysis, since we can not determine the actual reason for
the build results, and in such cases it is not clear how and if
the commit is impacted. In total, we studied 193,833 out of
243,811 build commits from the 392 different projects.

3.3 Test Dataset
To determine how effective the devised technique is in
detecting CI skip commits, we need to have a labeled testing
dataset that we can apply the devised technique on. We have
two main criteria when building the test dataset: first we
need a dataset that is different than the dataset used to learn

6There is only one project that all its CI commits fail which is the
sdywcd/jshoper3x project.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 4

TABLE 3
Summary of the Number of Commits After Introducing Travis CI, the Number and Percentage of Skip Commit for all Studied Java Projects, and for

only Projects Using CI Skip.

Measurement All the Projects Projects Using CI Skip

Min. Median(x̃) Mean(µ) Max. Min. Median(x̃) Mean(µ) Max.

#Commits§ 38 769.50 1,556 32,370 168 1,276 2,426 32,370
#Skip Commits 0 0 4.62 515 1 6 31.26 515
%Skip Commits 0.00% 0.00% 0.45% 33.64% 0.01% 0.48% 3.06% 33.64%
#Developers 1 33 49.18 612 2 40 67.60 341
Time-frame‡ 5 865 850 1,796 16 904.5 897.5 1,600
§Number of commits after the introduction of Travis CI service.
‡Time-frame is measured in the number of days.

our rules from (to test on completely unseen data); second
the dataset should have a sufficient number of CI skipped
commits (that are explicitly marked by developers). To do
so, we resorted to GitHub, and we searched for non-forked
Java projects that use Travis CI and where their developers
use the [ci skip] feature. To search for these projects on
GitHub, we first use the BigQuery GitHub dataset, which
provides a web-based console to allow the execution of a
SQL query on the GitHub data7. We search for all non-
forked Java projects that 1) contains the keywords [ci
skip] | [skip ci] in more than 10% of their commit
messages; and 2) do not exist in the TravisTorrent dataset.
We choose projects with > 10% of skipped commits, since
this is a good indicator that the developers of those projects
are somehow familiar with the Travis CI skip feature. We
also eliminate the projects that exist in the TravisTorrent
dataset, since our training data comes from the TravisTor-
rent dataset.

We found eleven projects that satisfy our selection cri-
teria. However, we eliminated one project where all the CI
skip commits were auto-generated, which left us with ten
projects. Table 2 presents the project names, the number of
commits after the introduction of Travis CI service to the
project, and the percentage of CI skipped commits in the ten
selected Java projects. In total there are 3,062 (average 306.20
and median 321.50) commits in all the selected projects. The
table also shows that the percentage of actual CI skipped
commits varies between 12.17 - 69.01% for projects in the
testing dataset. It is important to note that we only consider
commits after the use of Travis CI in the projects, since it
presents the period of the project life where its developers
start using the CI service.

4 INVESTIGATING THE REASONS FOR [CI SKIP]
COMMITS

In this section, we describe the preliminarily analysis that
we performed on the TravisTorrent dataset to understand
when developers decide to CI skip in real world projects.
Having this insight, our goal is to devise a rule-based
technique to detect skipped commits. We then come up with
a set of rules that is used to devise a rule-based technique to
determine commits that can be CI skipped.

4.1 Identifying CI Skip Commits in the TravisTorrent
Dataset
As mentioned earlier, developers can explicitly add the
keyword [skip ci] or its variation [ci skip] to tell

7https://cloud.google.com/bigquery/public-data/github

the Travis CI that they intend to skip a commit. Hence,
we mine the commit messages and search for the skip
keywords to obtain all of the skipped commits. After mining
each project’s data, we determine the time when the project
started using Travis CI by identifying the commit that first
introduced Travis’s CI configuration file (.travis.yml).
Then, we use a string pattern matching technique to au-
tomatically detect commits that are CI skipped, i.e., we
searched using the term ‘[skip ci] | [ci skip]’. This
was fairly straightforward since the skip keywords are very
structured.

The goal of this section is to investigate how much this
CI skip feature is used. Hence, we measured the number
and percentage of skipped commits per project. It turns out
that most projects did not [ci skip] commits - only 58
out of the 392 projects had one or more skipped commits.

Table 3 presents the statistics for the entire dataset of
the 392 projects and the data of the 58 projects that have at
least one skipped commit. We observe that overall, the mean
number of skipped commits per project is 4.62 commits,
which equates to (0.45%) of all commits. However, when we
look at the projects that have at least one skipped commit
(58 projects), we see that this percentage increases to 3.06%
skipped commits on average. In addition, we observe that
the 392 analyzed projects have a median of 33 (average =
49.18) developers, while the 58 projects that have at least
one CI skip commit have a median of 40 (average = 67.60)
developers. Our analysis also shows that the number of
developers in our dataset is in the typical range of the
number of developers in open source projects hosted on
GitHub [3], [35], [36]. Table 3 also shows the time-frame
of the studied projects (measured in days). For all projects
in our dataset, the median number of days is 865 (average
= 850), while for the projects that have at least one CI skip
commit the median is 904.5 days (average = 897.5).

It is important to distinguish between the two sets, i.e.,
projects that have at least one skipped commits and all
projects, since prior work showed that most developers may
not know about the different features of CI tools, such as the
ability to skip commits [19]. In any case, the projects with at
least one skipped commit gives us a different view and at
least for such projects we know that one or more developers
knew about the skip functionality.

In total, we find 1,813 skipped commits in the Travis-
Torrent dataset. Overall, we observe that the number/per-
centage of the skipped commits can vary significantly for
different projects, however, the detected number of skipped
commits is large enough to enable the exploration and
extraction of reasons that developers CI skip commits.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 5

TABLE 4
The Manually Extracted Reasons for CI Skipped Commits.

Reason Description Number (%) Information
Source

Non-Source code files Developers add or modify non source code file (e.g,. documenta-
tion files)

943 (52.01%) Repository

Version preparation Developers change the version of the project 274 (15.11%) Repository
Source code comment Adding , removing or editing source code comments 109 (6.01%) Repository
Meta files Developers modify meta files in the projects (e.g,. git ignore file) 68 (3.75%) Repository
Formatting source code Formatting source code without changing the semantic of the code 21 (1.16%) Repository

Source code Change that is made to source code of the project, but developers
skip the build commit.

191 (10.54%) Developer

Build change Developer made change to build system they use. 112 (6.18%) Developer
Tests Change that is related to test cases of the project. 18 (1.00%) Developer

Other 190 (10.48%) Various

4.2 Reasons for CI Skip Commits

The first author manually analyzed all the 1,813 CI skip
commits and identified the reason that developers skipped
the commit. The first author applied an iterative coding
process [30], where the first author first inspected every
skipped commit by looking at its meta-data (e.g., commit
message, etc.) and its associated source code in order to
determine the reason for the commit being skipped. Every
time a new reason for a CI skip is identified, we re-examine
all the previously categorized commits to determine if cate-
gorization for a commit changed. As a result of this manual
analysis, we were able to identify eight different reasons that
developer CI skip a commit for.

Since this manual analysis heavily depends on human
judgment, our classification is potentially prone to human
bias. Thus, to examine the validity of our classification, we
extracted a statistically significant sample of 317 (of the
1813 CI skip commits) commits to achieve a confidence
level of 95% and a confidence interval of 5%. Then, we had
the second author independently classify the 317 commits.
After, the second author classified the 317 commits, we
measured Cohen’s Kappa coefficient to evaluate the level of
agreement between the two annotators [7]. Cohen’s Kappa
coefficient is a well-known statistical method that evaluates
the inter-rater agreement level for categorical scales. The
resulting coefficient is a scale that ranges between -1.0 and
+1.0, where a negative value means poorer than chance
agreement, zero indicates exactly chance agreement, and a
positive value indicates better than chance agreement. As
a result of this process, we found the level of agreement
between the two annotators to be +0.96, which is consider
to be excellent agreement [13].

Table 4 lists the reasons, provides more detailed de-
scription, the number (and percentage) and information
source needed for CI skipped commits in the history of
the studied Java projects. The information source needed
is related to the type of information that one needs to make
a decision on whether a commit should be CI skipped or
not. For example, if the commit changes non-source code
files, one can easily infer such information from the project’s
repository. However, if the reason depends on the source
code being modified, then such information is difficult to
infer unless the developer or someone with domain specific

knowledge provides it. We discuss this in more detail, later
in Section 7.

In devising our rule-based technique to automatically
detect CI skip commits, we focus on the five rules that can
be inferred from the repository data since such reasons can
be automated and applied to a wide number of projects.
Below, we provide more details about each reason:

• R1. Changes that touch documentation or non-source
code files (52.01%): The most common reason for de-
velopers to skip a commit build is when developers
change, add, or delete non-source code files. For example,
commits that change readme files, release notices, and/or
adding logo to the projects.

• R2. Changes related to preparing releases (Version
preparation) (15.11%): For this type of skip commit,
developers simply prepare the project for release. For
example, developers modify the version number of the
project.

• R3. Changes that only modify source code comments
(6.01%): Developers CI skip commits when they modify
comments in the source code. For example, when they
change the copyright of a source code file or modify the
description of a partial source code.

• R4. Changes that touch meta files (3.75%): Developers
tend to skip a commit when they change meta data of the
project. For example, a developer may change a .ignore
file, hence, they do not see any reason to build the project.

• R5. Changes that format source code (1.16%): Format-
ting source code is another reason that developers do
skip commit for. For example, when a developer tries to
improve the readability of the source code, they add a
newline and/or spaces to reformat the source code.

In other cases, developers may CI skip for reasons that
are not easily identifiable using the repository data. Below
we detail the reasons that developers may CI skip a build:

• D1. Commits that change source code (10.54%): In this
case a developer changed the source code of a project
(e.g., add, delete, or/and modify source code), and CI
skip the build. We discuss and provide a more compre-
hensive list of such commits in Section 7.

• D2. Commits that change the configuration of the build
system used in the project (6.18%): In certain cases,
developers change the configuration of the build systems

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 6

and CI skip that commit. Although the detection of such
a commit can be easily automated, the decision that
the developer makes to CI skip or not depends on the
developers’ themselves. For example, in certain cases, a
developer may change the build configuration and decide
to CI skip and in another they may not.

• D3. Changes related to test cases of a projects (1.00%): In
these cases developers CI skip commit that change source
code of test cases. For example, a developer adds a new
test case to the project and decide not to build the project.
Once again, this can be easily automated, however, the
reason that a test-related change may get CI skipped or
not depends on the developers themselves, which makes
it difficult to automate.
There are cases (10.48%) where developers CI skip com-

mits, but we cannot identify the exact reasons or some rare
cases that are not worth having a separate category for.
Finally, it should be mentioned that a build commit could
contain more than one change type, hence the percentages
above sum to more than 100%.

The most frequent type of changes that developers
tend to skip build commits and can be inferred from
the repository data are changing non-source code files,
version preparation, source code comments, meta files,
and formatting source code. The other three types of
changes that developers CI skip a commit for require
the developer knowledge which are changing source
code, configuration of the build system, and test code.

4.3 Operationalization of Rules to Automatically Detect
CI Skip Commits
As mentioned above, we use the CI skip commits to learn
the different reasons that such commits exist. We do so in
order to come up with a rule-based technique that can be
used to automatically mark commits as CI skip commits.
Hence, in this section, we detail the ‘rules’ in our rule-based
technique, which are based on the aforementioned reasons.

Our rules are based on the reasons that can be extracted
from software repositories (i.e., R1-R5). We focus on these
reasons since they can be easily extracted, applied to any
software project, and be fully automated. Below, we describe
how we operationalized the rules used to detect CI skip
commits:
Rule 1: Non-source code files: Similar to prior work [20],
[37], we rely on the file extension to identify if a file change
is a non-source code change (e.g,. readme file). We came up
with a list of file extensions that indicate non-source code
files (e.g., .md, .txt, and .png). Then, for each new commit,
we check if the files changed are listed in the predefined list
of non-source code extensions. In cases where the file does
not have any extension, we check if the file is one that is not
expected to affect the build (e.g., LICENSE, COPYRIGHT)8.
In the case of the aforementioned files, we mark the commit
with a CI skip.
Rule 2: Version release: We analyze the changed files in
a commit and if the commit only modified the version in
build configurations files, e.g., Maven or Gradle, then we

8A complete list of the file extensions can be found here: http://das.
encs.concordia.ca/publications/which-commits-can-be-ci-skipped/

mark the commit as a release preparation commit. Since
such commits need not to be built, we mark the commit
as a CI skip commit.
Rule 3: Source code comments: We consider changes that
only modify the source code comments as changes that do
not effect the build. Hence, we use regular expressions to
remove the comments from the modified files. Since we
analyze projects written in Java programming language, we
considered all files ending with .java to be Java source code
files and applied the following regular expression to each
line of those files:

/\/\/(.*)|\/*(*(?!\/)|[ˆ*])*?*\//

We then check if the remaining lines modified by the
change are the same, we consider the change as a source
code comment change and mark it as a CI skip commit.
Rule 4: Meta files: As we did with non-source code files,
we identify meta files by looking at the extensions of the
files modified in the commit. We consider a commit in this
category if it only modifies meta files in the repository such
as .ignore file.
Rule 5: Formatting source code: To identify changes that
only modify the format of the source code, we compare the
current version of the file with the previous version of the
file after removing all white spaces that are ignored by the
Java language grammars. To be able to combine this rule
withe Rule 3, we implement this process after removing the
source code comment from both versions of the file. Thus,
we use the devised rule-based technique to implement a tool
(Details of the tool are in Section 8).

5 CASE STUDY RESULTS

After understanding the reasons for CI skip commits and
devising the rules to detect such commits, we would like to
answer our research questions related to the effectiveness of
our technique (RQ1) and the effort savings (RQ2). For each
question, we describe the motivation behind the question,
the approach to address the question, and present our
findings.

5.1 RQ1: How effective is our rule-based technique in
detecting CI skip commits?

Motivation: Since building the project after every commit
can be wasteful (Duvall et al. [11], p. 87), we want to be able
to effectively determine commits that can be CI skipped.
Since it is now up to the developers to manually CI skip
commits, we can use our rule-based technique to help auto-
mate this process and even recommend to developers if their
commit should be CI skipped or not. Using the reasons we
extracted from the current CI skipped commits, we devise a
rule-based technique to detect skip commit. Thus, the goal
of this research question is to examine how good is the
defined rule-based technique in detecting skipped commits.
Approach: To determine how effective the devised rule-
based technique is, we run the devised technique on all
the projects in the testing dataset described in section 3.3.
To evaluate the accuracy of our technique in detecting skip
commits, we calculate the standard classification accuracy
measures - recall and precision. In our study, recall is the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 7

TABLE 5
Performance of Applying the Rule-Based Technique.

Project Precision Recall
F1-Measure

(Relative
F1-Measure)

AUC

TracEE Context-Log 0.91 1.00 0.96 (2.6X) 0.98
GrammarViz 0.57 0.89 0.70 (3.3X) 0.89
Parallec 0.80 0.97 0.88 (1.7X) 0.83
SAX 0.46 0.95 0.62 (1.9X) 0.80
jMotif-GI 0.32 0.79 0.46 (2.4X) 0.78
CandyBar 0.84 0.46 0.59 (1.0X) 0.63
Solr-iso639-filter 0.49 0.94 0.64 (1.4X) 0.62
SteVe 0.37 0.28 0.32 (1.1X) 0.58
Mechanical Tsar 0.69 0.20 0.31 (0.8X) 0.58
Trane.io Future 0.26 0.33 0.29 (1.1X) 0.56

Average 0.57 0.68 0.58 (1.7X) 0.73
Median 0.53 0.84 0.61 (1.5X) 0.71

percentage of correctly classified Skip Commits relative to
all of the commits that are actually skipped (i.e. Recall
= TP

TP+FN). Precision is the percentage of detected skipped
commits that are actually skipped commits (i.e. Precision
= TP

TP+FP). Finally, we combine the precision and recall
of our defined rule-based technique in detecting skip com-
mits using the well-known F1-measure (i.e. F1-measure
= 2× Precision×Recall

Precision+Recall).
Since our dataset is unbalanced (i.e., only a small per-

centage of commits are CI skipped), we would like to put
our results in context by comparing it to a baseline that takes
this imbalanced data into account. Similar to prior work [9],
[32], we calculate the performance of the baseline model as
follows: the precision of this baseline model is calculated by
taking the total number of CI skip commits over the total
number of commits of each project. For example, project
jMotif-GI has a total number of 345 commits, of those,
only 42 commits are commits that are explicitly labeled as
CI skip commits. The probability of randomly labeling a
commit as a CI skip commit comment is 12.17% (i.e., 42

345).
Similarly, to calculate the recall we take into consideration
the two possible classifications available: CI skip or not.
Once a prediction is made, there is a 50% chance that the
commit will be classified as CI skip commit. Thus, the
F1-measure for the baseline of the jMotif-GI project is
computed as 2× 0.1217×0.5

0.1217+0.5 = 0.098.
Then, we divide the F1-measure from our technique

with the baseline F1-measure and provide a relative F1-
measure, which tells us how much better our technique does
compared to the baseline. For instance, if a baseline achieves
a F1-measure of 10%, while the defined rule-base technique
achieves a F1-measure of 20%, then the relative F1-measure
is given 20

10 = 2X . In other words, the defined rule-based
technique performs twice as accurate as the baseline model.
It is important to note that the higher the relative F1-
measure value the better the model is in detecting CI skip
commits.

Additionally, to mitigate the limitation of choosing a
fixed threshold when calculating precision and recall, we
also present the Area Under the ROC Curve (AUC) values.
AUC is computed by measuring the area under the curve
that plots the true positive rate against the false positive
rate, while varying the threshold that is used to determine

if a commit is classified as skipped or not. The advantage
of the AUC measure is its robustness toward imbalanced
data since its value is obtained by varying the classification
threshold over all possible values. The AUC value ranges
between 0-1, and a larger AUC value indicates better classi-
fication performance.

Results: Table 5 shows the result of the devised rule-based
technique. We first present the precision, recall, F1-measure
(relative F1-measure shown in parentheses), and AUC in
the table. As we can see, the devised rule-based technique
achieves an average F1-measure of 0.58 (median = 0.61) and
average AUC of 0.73 (median = 0.71). This corresponds
to a significant improvement of 72% in F1-measure over
our baseline. The AUC at 0.73 is also significantly higher
than the 0.50 baseline. As mentioned earlier, although these
may seem like modest performance numbers, they are quite
significant given the unbalanced nature of the data (i.e., only
a small portion of the commits can be CI skipped).

Moreover, we see from Table 5 that for nine of the ten
projects, we achieve an improvement in F1-measure and
AUC over the baseline. The results show that our rule-based
technique is effective in detecting CI skip commits, achiev-
ing an AUC of up to 0.98 for the TracEE Context-Log
project.

However, in one particular project (Mechanical
Tsar), our technique performs poorly. We manually inves-
tigated the data from this project to better understand the
reasons for this poor performance. For the Mechanical
Tsar project, we found a total of 134 commits that are
explicitly marked to be CI skipped. The devised rule-based
technique correctly identified 26 of these commits. For the
remaining 108 commits, what we found is that they were
related to either source code changes (which we cannot
automatically skip without developer knowledge), changes
related to Maven dependencies (which we believe should
not be skipped, since they may break the project [31]) and
changes related to the configuration of Docker containers
(once again, changes that need developer knowledge to
safely mark as CI skip).

It is important to note that there are two main factors
that impact the performance of our technique. First, we test
the technique against commits that are explicitly labeled by
the developers to be CI skipped. In many cases, our rule-
based technique is correct in flagging a commit to be CI
skipped, however, the developer may have forgotten or not
known that this commit should be CI skipped (we discuss
this point in more detail in Section 10.2). This, of course,
would result in a false negative and negatively impact the
overall performance of our technique. Second, our technique
is rule-based mainly due to the fact that we want it to be
easily explainable and easy to apply (as we show later in
Section 8).

Our rule-based technique can effectively classify CI
skip commits with an average AUC of 0.73 and F1-
measure of 0.58, which represents an improvement of
70% over a baseline model.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 8

5.2 RQ2: How much effort can be saved by marking CI
skip commits using our rule-based technique?

Motivation: After determining the effectiveness of the rule-
based technique, we would like to know if applying this
technique and marking some of the commits as CI skip com-
mits would save significant effort for the project. Automat-
ically detecting commits that can be CI skipped can reduce
the amount of resources needed for the CI process and even
speed up the overall development, making code reach its
customers faster. Therefore, in this RQ we investigate the
amount of effort that can be saved by applying our rule-
based technique to the projects in our TravisTorrent dataset.
Approach: To address this research question, we evaluate
the effort saving, by applying the defined rule-based tech-
nique on real build commits from the TravisTorrent dataset.
We perform our analysis on projects from the TravisTorrent
dataset since it contains build times and results, which en-
able us to measure effort. In total, we applied our technique
on the 392 Java projects, which contained 193,833 build
commits. We consider two complementary ways to measure
the effort savings: first, we measure how many builds a
project can save if they apply our rule-based technique; and
second, we measure how much time a project saves when
applying our technique on their commits. The idea is that,
if the rule-based technique detects a build commit as a skip
commit, the build status will not change, and there would
be no need to build.

For every project in the TravisTorrent dataset (392 Java
projects), we first apply the rule-based technique on all the
commits. We then identify the set of changes in a build commit.
We rely on the build linearization and commit mapping
to git approach that is implemented in the TravisTorrent
dataset [1], [2]. The approach basically considers the build
history of a project on Travis CI as a directed graph and
links each build to the commit on git that triggered the build
execution. We refer readers to the original paper by Beller et
al. for a full detailed explanation of the approach used by
the TravisTorrent dataset [1], [2]. Second, we aggregate the
results of the set of changes. This allows us to identify build
commits (with all their associated changes) that should be
skipped, and we predict that this build commit will result
in a successful build (i.e, passed status from Travis CI). Then,
we compare our predicted skipped build commit with the
result from Travis CI.

We follow this methodology since a build commit can
be associated with more than one commit (i.e., the set of
changes) and we also want to only CI skip commits where
the build is successful. Skipping a commit that causes the
build to fail is not desirable since it means we may have let
a failing build pass by. Finally, we measure the percentage
of the build commits that we predict to be passed, since
different projects will have different number of detected
skip commits.

To measure the saved time, we use the time that is
required for a build to be finished including setup time,
build time and test run time. This time measurement is
provided by Travis CI for every build. To put our results in
context, we also measure the total time for all build commits
and calculate the percentage of time saving of skip commits
over all the commits. We argue that when a project does

0

20

40

60

80

P
er

ce
nt

ag
e

of
 D

et
ec

te
d

S
ki

p
C

om
m

its

(a) Percentage of CI skip
commits

1
10

10
0

10
00

10
00

0

T
im

e
S

av
in

g
in

 M
in

ut
es

 (
Lo

g
S

ca
le

)

(b) Time Saving in Minutes

Fig. 1. Beanplots showing the distributions of effort savings in terms of
the number of CI skip commits and saved time for different values of
Projects. The horizontal lines represent the medians.

not build on build commits that we identify as skip build
commit, this will save the projects’s time.
Results: Percentage of saved build commits: Figure 1a shows
the distribution of the saved build commits in all the
studied projects. It shows that on average, 18.16% (median
= 15.04) of the build commits in the studied projects can
be CI skipped. As the figure shows, for some projects,
the percentage of CI skipped commits can be more than
70% of their commits. This finding can have significant
implications for software projects, especially given that prior
research showed that developers often complain about their
CI process slowing them down [18].

We also examined the top projects in terms of the per-
centage of commits to be CI skipped. We found that all of
these projects are real Java projects (i.e., not just toy projects),
where our technique can make a difference. For example,
the projects, Money and Currency API, have more than
1,000 commits and 112 build commits after the introduction
of Travis CI to the project, and according to our technique,
63.4% of their build commits can be CI skipped.

Amount of time saved: Figure 1b shows the distribution
of time saving (in minutes) for skipped commits in all the
studied projects. We find that, on average, 917 (median =
251.40) minutes can be saved per project if the classified
commits are CI skipped. This time saving corresponds to an
average of 10.70% (median = 15.17%) of the total time for all
builds in our dataset. In some cases of certain projects, we
can save up to 37,600 minutes (or approximately 626 hours)
by CI skipping commits that need not be built.

Once again, we manually examined the top projects in
terms of the time savings due to CI skips. We found that all
of these projects are real Java projects where our technique
can make a difference. At the top of the list is the GeoServer
project where our technique can save 37,600 minutes since
our technique shows that 17.61% of GeoServer’s 7,817 com-
mits (2,951 build commits after the introduction of Travis
CI) can be CI skipped.

Our rule-based technique can save developers, on aver-
age, 18.16% of their builds. These savings equate to an
average time savings of 917 minutes in build time per
project.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 9

TABLE 6
Background of Survey Participants.

Experience # Developers’ Position # Experience with
CI (in years)

#

<1 0 Full-time Developer 30 <1 2
1 - 3 4 Part-time Developer 3 1 - 3 9
4 - 5 5 Freelance Developer 2 4 - 5 10
>5 31 Research Developer 5 >5 19

6 THE DEVELOPERS’ PERSPECTIVE

Although our results showed favourable results in terms
of its accuracy and potential time savings (an average of
18.2% of their builds), one question that remains is whether
such a technique is really needed by developers. To answer
this question, we conducted a developer survey asking
developers whether they consider the ability to CI skip
commits as being important and why they CI skip commits.

We sent the survey to 512 developers whose names
and emails were randomly selected from the 392 projects
in the TravisTorrent dataset. In total, we were able to
identify 19,231 developers in the dataset. We select a sta-
tistically significant sample to attain a 5% confidence in-
terval and a 99% confidence level. This random sampling
process resulted in 643 developers from 152 projects. We
manually examined all the names and email address of
the randomly selected developers to remove any incorrect
email or possible duplicated developers and to make sure
that we have personalized invitations that will increase
the survey participation [34]. This manual analysis left us
with 590 developers. Our survey was emailed to the 590
selected developers, however, since some of the emails were
returned for different reasons (e.g., the email server name
does not exist, out of office replies, etc.), we were able to
successfully reach 512 developers. We received 40 responses
for our survey after opening the survey for 10 days, i.e.,
the response rate is 7.81%. This response rate is acceptable
comparing to the response rate reported in other software
engineering surveys [33].
Survey Design: We designed an online survey that included
three main parts. First we asked questions about the partic-
ipant’s background, development history and their expe-
rience using different CI services. We also asked whether
the participants thought it is important to be able to CI
skip commits or not and finally, we asked when/why might
these developers CI skip a commit.

Table 6 shows the development experience of the par-
ticipants, their position, and the number of years they have
used CI services. Of the 40 participants in the survey, 31
participants had more than 5 years of development expe-
rience, 9 responses had between 1 to 5 years; 30 partici-
pants identified themselves as full-time developers and 5
participants as part-time or freelance developers, and the
remaining 5 participants stated they are researchers who
develop software. As for the experience of using CI services,
19 participants had more than 5 years of using CI, 10
respondents had between 4 to 5 years, 9 others had 1 to
3 years of experience, and finally two participants had less
than 1 year of using CI. Overall, the participants are quite
experienced in software development and using CI.

10%
15%

40%

15%
20%

0%

10%

20%

30%

40%

50%

Absolutely	
not	needed

Not	
important

Would	be	
nice	to	have

Important Very	
important

Fig. 2. Survey responses regarding the importance of being able to
automatically CI skip a commit.

6.1 How important is it for developers to have the abil-
ity to automatically CI skip a commit?

We asked developers how important it is for them to have
an automated way to skip the CI process for a commit
or a pull request. In essence, our goal was to determine
whether having our rule-based technique would be deemed
favorable. To avoid bias [23], [24], we asked them to an-
swer the question on a five-point likert-scale, ranging from
1= absolutely not needed to 5= very important. Figure 2
reports the result related to developers’s opinions about
the importance of having the ability to automatically CI
skip a commit. Of the 40 participants, 35% indicated that
it is important or very important and 75% indicated that
it would nice, important or very important to have a tech-
nique that automatically helps them determine a CI skip
commit. On the other, the remaining 25% considered such an
approach to be not important or absolutely not important.
We believe that these results clearly indicate that having a
technique to help automatically CI skip commits is needed
by developers.

6.2 When do developers skip the CI process?

In addition to simply asking whether it is important to have
a technique, we also asked participants in which cases and
why they CI skip a commit. We provided a free-form text
box for participants to reply in. Since the responses for these
two questions are free-text, we collected all of the responses
and manually analyze them. The first two authors carefully
read the participant’s answers and came up with a number
of categories that the responses fell under. Next, the same
two authors went through the responses and classified them
according to the extracted categories. To confirm that the
two authors correctly classified the responses to the right
category, we measure the classification agreement between
the two authors. To do so, we use the well-known Cohen’s
Kappa coefficient [7]. For the two questions, we found the
level of agreement was +0.87 for when developer skip CI
process and +0.82 for the question why do developers skip
CI process. Finally, for the few cases that annotators failed
to agree on, the third author was consulted to resolve the
differences and categories these cases.

We were able to identify three main categories for when
developers skip the CI process. Also there are some small
cases that we group into one category as “Other”. In the fol-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 10

lowing, we present these cases and provide some examples
of participant replies under each category:
Non-Source Code Changes (71.79%): The majority of the
participants indicated that changing non-source code is the
main reason when decide to skip CI process. For example,
P21 stated: “documentation updates, trivial updates that don’t
affect execution” and P30 “I usually forget. But a documenta-
tion/README change is the most likely.”. Note here that P30
explicitly mentioned that he/she forgets to CI skip, which
is exactly why we believe our technique will be very useful
since it automatically flags such commits.
No Test Code Coverage (15.38%): The second main case
of skipping CI process based on the participant’s responses
is when the changed source code is not covered with tests.
Some example responses that mention these cases are stated
by participant P14: “When tests are not written to work for that
particular source branch/repo”.
Trivial Source Code Changes (2.82%): A less common case
for skipping the CI process is when the commit is perform-
ing a trivial source code change or fixing a trivial bug. For
example, P11 stated that he/she skips the CI process when
fixing a small bug; “small bug fixes”. Another example P31
stated that “partial jobs already ok”.
Other (27.50%): Other cases cited by the participants for
when they skip CI process. In these cases developers re-
ported various cases related to the source code changes
and/or build scripts such as refactoring. For example, P27
stated that “build settings (cmake, etc...), refactoring, etc...”.
Other cases such as increasing the development speed or
skipping that build that is known to be failing. Some exam-
ples of such cases reported by P18 & P40 as follows: P18
“When something is broken and skipping CI will (probably) fix
things faster.” & P40 “redundant builds and build that are known
to fail”.

Also, three participants stated that they do not CI skip
any commit for the open source projects that they contribute
to since they are required to run the CI process on all
commits. For example, P1 said that “the main GitHub repos in
which I work require a passing CI build to merge PRs so I never
skip CI for those repos, even for docs only changes.”

6.3 Why do developers skip the CI process?

We followed the same approach described above to classify
the answers of the why question. After the classification of
the participants’ answers, we extracted three main reasons.
There are also a few cases that we group them into one
“Other” category:
No Change in Build Result (43.59%): Nearly half of the
participants reported that when they expect the build result
will not change, they skip the CI process. Some example are
reported by P32 and P4 as follows: P32 said that “Because
I have recently seen a successful run (within minutes) and have
faith that my docs have not changed any code.” and P4 “Because
rerunning the CI would most likely be redundant as nothing in
the result would change.”
Saving Time (35.90%): The second most cited reasons for
skipping the CI process is to save development time spe-
cially when building the project and running the tests takes
a long time. For example, participant P16 mentions that “To
save time. Some projects have CI that takes 30 minutes or more

to complete with multiple PRs/branches that are competing for
CI resources.”. Other participant believe when the CI process
takes a long time, it could block other developers and result
in slowing down the development. For example, P26 stated
“Because the build process is quite long and I don’t want to block
up the queue for someone else who’s working.”. These examples
clearly show that having such a technique is needed by
developers in practice.
Saving Computation Resources (28.21%): In some cases
running the CI process on every commit to the project seen
as wast of resource by the survey participants. For example,
as P5 and P1 state: P5 “I do not want to waste resources
on effectively unchanged codebase” & P1 “I skip CI when it’s
unnecessary so as to not waste computing resources.”
Other (10.00%): In these cases, developers cited different
reasons for skipping the CI process such as when they
contribute to a small project or they run the build and run
the test cases locally. For example, P35 stated “Only for small
projects.”, P37 said “some because the ci can result in unexpected
deploy...”, and P40 “If I expect the commit to fail, I might skip
the CI build”.

7 DISCUSSION

In this section, we discuss areas where our rule-based
technique can be improved, and present results of how
source code analysis techniques may potentially improve
performance.

7.1 Special Cases of CI Skip Changes.
Although our rule-based technique is able to significantly
outperform the baseline, it still misses some cases of com-
mits that should be CI skipped. Therefore, in this subsection,
we manually examine the cases that are missed by our
rule-based technique to better understand where (and how)
our technique can be improved. We examined commits
that were explicitly marked by developers as a CI skip
commit (i.,e. contains the keyword [ci skip] in their
commit message), however, our rules missed. Below, we list
the different types of CI skip commits that our rule-based
technique missed:
SC1. Renaming variables, methods, or/and classes: In
many cases, developers tend to CI skip commits when
they rename Java objects (e,.g. variables, methods or/ and
classes). The following is an example of a skip commit
where a developer commits a change to rename a method
name.

- public AgreementReport getAgreement() {
+ public AgreementReport

getAgreementReport() {
return new

AgreementReport.Builder().compute(stage,
answerDAO).build();

Although it is easy to detect such renaming, it is very
difficult to argue that all such cases can be CI skipped.
However, one can devise project-specific rules that can learn
if all renaming commits in a certain project are skipped, and
apply such a rule for that one project. We plan to investigate
the introduction of such project-specific rules in the future.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 11

SC2. Optimizing import statements: To use a library in
Java (built-in or third-party), developers need to use import
statements that specify part of the library or more general
declaration. In the skip commit related to this case, devel-
opers may decided to optimize the declaration of some Java
libraries by specifying parts of the library or make it more
general. For example, developers commit a source code
change where they specify the type of Java collection they
use instead of the general declaration as it is shown in the
following commit:

- import java.util.*;
+ import java.util.Collection;
+ import java.util.Collections;
+ import java.util.Map;

Once again, although it would be trivial to devise a rule
that CI skips commits that optimize the import statements,
it is not the case that all commits that optimize import
statements should be CI skipped. Hence, it is difficult to
automate the skipping of this type of commits.
SC3. Java annotation: In Java, source code annotations
can be used for several reasons such as documentation
or to force the compiler to execute specific code snippets.
We found cases that developers skip commits when they
add/modify/delete Java annotations. The following shows
an example for such a skip commit.

@JsonProperty("workerRanker")
+ @SuppressWarnings("unused")
public String getWorkerRankerName() {
return workerRanker == null ? null :

workerRanker.getClass().getName();

Most likely, the developers feel that the project need not
be built after such a change. However, in some cases the
develops may feel that indeed the project needs to be built.
SC4. Modifying the log or exception message: Developers
add logs or exception messages to help in the debugging of
their Java programs. However, since often the log message
do not affect the functionality of the program, developers
tend to CI skip such commits. In the following example,
a developers CI skips the commit that modifies the log
message and in the other the developers CI skips the commit
that modifies the exception message.

logger.info(String
, ... ,
- progressPercent, secondElapsedStr, "",
+ progressPercent, secondElapsedStr,

hostName,
...);

catch (Exception e) {
- fail("sholdn’t throw an exception,

exception thrown: \n" +
StackTrace.toString(e));

+ fail("shouldn’t throw an exception,
exception thrown: \n" +
StackTrace.toString(e));

e.printStackTrace();

Although we can automate this case with a rule, we
decided not to since in other cases, developers build the

TABLE 7
Performance of Rule-Based Technique with ChangeDistiller.

Project Precision Recall
F1-Measure

(Relative
F1-Measure)

AUC

TracEE Context-Log 0.91 1.00 0.96 (2.6X) 0.98
GrammarViz 0.57 0.89 0.70 (3.3X) 0.89
Parallec 0.80 0.97 0.88 (1.7X) 0.83
SAX 0.46 0.95 0.62 (1.9X) 0.80
jMotif-GI 0.32 0.79 0.46 (2.4X) 0.78
CandyBar 0.86 0.56 0.68 (1.2X) 0.68
Solr-iso639-filter 0.49 0.94 0.64 (1.4X) 0.62
SteVe 0.43 0.34 0.38 (1.4X) 0.62
Mechanical Tsar 0.86 0.54 0.67 (1.6X) 0.75
Trane.io Future 0.26 0.33 0.29 (1.1X) 0.56

Average 0.60 0.73 0.63 (1.9X) 0.75
Median 0.53 0.84 0.65 (1.7X) 0.77

project when they modify the log or exception messages.
This is primarily due to the fact that they will often perform
more than one modification per commit (e.g., fix a bug and
update he log message).
SC5. Refactoring source code: In certain cases, developers
perform some refactoring procedure on the Java source code
(e,.g. moving method, or split Java classes into two or more
classes) and decide to CI skip the commit. Although we
believe that the project should be built after a source code
refactoring, in some cases developers tend to skip them.

One way to detect some of the aforementioned changes
is through the use of source code analysis. In the next sub-
section, we examine the applicability of using source code
analysis to enhance our rule-based technique in detecting CI
skip commits.

7.2 Can Source Code Analysis Enhance the Detection
of CI Skip Commits?

As we have seen in the previous subsection, the rule-based
technique misses some CI skipped commits. It is evident
that such missed cases may be better detected through
source code analysis. In this section, we apply and inves-
tigate the effectiveness of using source code analysis in
detecting CI skip commits.

To perform the source code analysis, we use
CHANGEDISTILLER [14], a well-known tool that identifies
statement-level structural changes between Java Abstract
Syntax Tree (AST) pairs. CHANGEDISTILLER presents the
differences between two source code files as edit scripts, or
sequences of edit operations (e.g., insertions, deletions, or
updates) involving structural entities at varying levels of
granularity. It relies on a measure of textual similarity be-
tween statement versions to detect cases where a statement
was modified.

Since we need to make our decisions at the commit level,
we wrote a script to augment the output from CHANGEDIS-
TILLER so that it applies at the commit level. More specifi-
cally, we extract all the source code Java file pairs (modified
and original) for each file touched in a commit. We then use
CHANGEDISTILLER to extract the fine-grained source code
changes between each pair of revisions. CHANGEDISTILLER
takes as input the pair of revision files and creates two
Abstract Syntax Trees (ASTs) that are used to compare these

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 12

TABLE 8
Mann-Whitney Test (p-value) and Cliff’s Delta (d) for Using Only Our

Rule-Based Technique and With the Integration of Source Code
Analysis.

Metrics p-value d

Precision 0.8201 -0.07 (negligible)
Recall 0.7047 -0.11 (negligible)
F1-Measure 0.5443 -0.17 (small)
AUC 0.7327 -0.1 (negligible)

revisions. As a result, CHANGEDISTILLER outputs a list
of fine-grained source code changes (e.g., an update in a
method invocation or rename).

We analyzed the result of CHANGEDISTILLER to deter-
mine how the additional information from the tool can
help enhance our rule-based detection technique. We find
two main cases. First, we find cases where the output of
CHANGEDISTILLER provides the same information as one
of our rules (e.g., formatting changes that are due to white
space). In such cases, we do not consider the output to
be necessarily useful, since our simple rules that are more
lightweight can detect such cases. Second, we find cases
where there is a change in the code, but there are no changes
in the AST pairs. Note that although there is change in the
ASTs, there may be changes in the nodes (e.g., if one of the
nodes is renamed). We find that such output can contain
useful information since it can indicate an ideal case of a CI
skip commit.

Since the first case (i.e., where the output of
CHANGEDISTILLER is similar to our rules is not interesting,
we focus on the output of the second case. We find that
output of CHANGEDISTILLER in the second case can fall into
three main types of changes:

• Simple renaming. For commits where simple renaming
are done, CHANGEDISTLLER will output a change in the
nodes of the AST, but no change in the structure of the
AST itself. We use this output as an indicator of a commit
that can be CI skipped. This case handles a subset of SC1
mentioned in Section 7.1.

• Java annotations. We noticed that cases where
CHANGEDISTLLER provides no output (neither in the
AST or the nodes) can indicate cases where Java anno-
tations are added/modified. We use this no output as an
indicator of a commit that can be CI skipped. This case
handles SC3 mentioned in Section 7.1.

• Minor code restructuring. Again, we noticed that cases
where CHANGEDISTLLER provides no output (neither in
the AST or the nodes) can indicate cases where minor
code restructuring is performed. We use this no output as
an indicator of a commit that can be CI skipped. This case
handles a subset of SC5 mentioned in Section 7.1.

To determine how much using code analysis can im-
prove our rule-based technique, we perform an experiment
to compare the performance improvement of the rule-based
technique vs. rule-based and code analysis. We re-ran the
experiment using the ten open source Java projects in the
testing dataset, listed in Table 2. We measure performance
using precision, recall, F-measure, and AUC.

Table 7 shows the result of our rule-based technique with

Change
Source Code

Detecting Skip Commit by Applying the Rule-based Techniques

Apply Rule-Based
Technique

Does Commit
Message Contain

[CI Skip]?

Travis CI

Final Commit
Message

Commit Modifications

1

2

3 4

Fig. 3. The workflow of the designed CI-SKIPPER tool.

the integration of source code analysis technique. We find
that using source code analysis improves the performance
of our rule-based technique for only three projects of the
10 projects, namely CandyBar, SteVe, and Mechanical
Tsar (highlighted in bold in Table 7). Using the additional
information from CHANGEDISTLLER slightly improved the
overall performance of our rule-based technique, increasing
the average F-measure from 0.58 to 0.63 and AUC from 0.73
to 0.75.

To understand the cases where source code analysis
helps in detecting CI skip commits, we examined the cases
that improved our performance. We found 65 cases from
the three projects, where source code analysis helped in
flagging CI skip commits, which were missed by the rule-
based technique. The first two authors manually examined
each of the 65 cases. We find that of the 65 commits, 73.9%
are related to simple renaming and restructuring, 10.8%
are related to annotations and another 15.4% are related
to changes in import statements. In addition, to examine
whether the difference in performance between using only
the our rule-based technique and integrating source code
analysis is statistically significant, we performed a Mann-
Whitney test. We also use Cliff’s Delta (d), which is a non-
parametric effect size measure to interpret the effect size. As
recommended in prior work [16], we interpret the effect size
value to be small for d < 0.33 (positive as well as negative
values), medium for 0.33 ≤ d < 0.474 and large for d ≥
0.474.

Table 8 shows the p-values and effect size values. It
shows that for all performance measures the differences are
not statistically significant, having p-values > 0.05. Also,
the effect size values are small or negligible. The result
show that although we see that code analysis does help, its
improvement in performance is not statistically significant.
However, we believe that if certain projects have many
changes that are related to source code, such source code
analysis may be worth the extra effort.

Given that 1) the rule-based technique is lightweight,
2) it can be applied without the additional installation of
a source code analysis tool, and 3) that the performance
improvements of source code analysis are not statistically
significant, in the next section, we detail a prototype tool
that can automatically detect CI skip commits using our
devised rules.

8 TOOL PROTOTYPE: CI-SKIPPER

One of the main reasons that we preferred to use a rule-
based technique is that it can be easily implemented. As we
showed in RQ1, our rule-based technique is very effective in
some projects, hence applying this technique can yield large

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 13

(a) Sample commit that does not modify any source code. (b) The commit is tagged with [ci skip].

Fig. 4. Screen shots of CI-SKIPPER. The commit is automatically detected to be CI skipped and the ‘ci skip’ tag is added to the commit message.

resource savings. However, as prior work has shown [19], in
some cases, developers may not even know that CI skip is
a feature of their CI framework. Therefore, we believe that
devising a tool that can automatically detect and pre-label
commits with CI skip would be very beneficial.

We built a tool, called CI-SKIPPER, that applies our rule-
base technique. The tool is very lightweight and is easily
integrated with any source code control versioning system.
Our prototype was built to work with Git, since it is one of
the most popular source code versioning systems today [5].

Figure 3 shows the workflow of CI-SKIPPER. Every time
a developer commits a change to the repository (step 1), CI-
SKIPPER is triggered through a git hook. Once triggered,
CI-SKIPPER analyzes the change made by the commit’s files,
applying the defined rules to determine whether the commit
should be CI skipped (step 2). If the commit should be
CI skipped, CI-SKIPPER modifies the commit message by
adding the tag [ci skip] in the commit message (step 3).
Finally, when the commit is pushed to the remote repository,
the CI system, which will get triggered examines the commit
message and upon seeing the tag CI skip will skip kicking
off the CI process for that commit (step 4).

CI-SKIPPER was developed to be easily installed and
enabled/disabled. Figure 4 shows screen shots of how CI-
SKIPPER works with an existing Git repository. CI-SKIPPER
is free and publicly available. It can be easily installed from
the node package manager npm by running the following
command in the console.

npm install -g ci-skipper

Once installed, CI-Skipper can be enable or disabled with
the following commands:

ci-skipper on //enable CI-Skipper.
ci-skipper off //disable CI-Skipper.

Through our use and testing of CI-SKIPPER, it performed
well (without any noticeable overhead) and applied the
rules correctly, by marking commits that fit our rules with

[ci skip].

9 RELATED WORK

In this section, we present the work most related to our
study. We divide the prior work into two main areas; work
related to the improvement of CI technology and work
related to the usage of CI.

9.1 Improvement of CI Technology.
There is a limited number of studies that investigate the pos-
sibility to improve CI tools. Brandtner et al. [4] introduced a
tool called SQA-Mashup that integrates data from different
CI tools to provide a comprehensive view of the status of a
project. Campos et al. [6] propose an approach to automati-
cally generate unit tests as part of the CI process. Other re-
searchers investigated the improvement of communication
between developers who use CI in their projects. They find
that CI provides a mechanism to send notifications of build
failures [12], [25]. Downs et al. [10] conducted an empirical
study by interviewing developers and found that the use of
CI substantially affect the team’s work-flow. Based on their
findings, a number of guidelines were suggested to improve
the CI monitoring and communication when using CI.

Other work has focused on detecting the status of builds
and investigated the reasons for build failures. Hassan and
Zhang [17] used classifiers to predict whether a build would
pass a certification process. Rausch et al. [28] collected a
number of build metrics (e.,g. file type and number of
commits) for 14 open-source Java project that use Travis
CI in order to better understand build failures. Among
other findings, their study showed that harmless changes
sometimes break builds but this often indicates unwanted
flakiness of tests or the build environment. Seo et al. [31]
studied the characteristics of more than 26 million builds
done in C++ and Java at Google. They found that the most
common reason for builds failures is the dependencies be-
tween components. Ziftic and Reardon [41] propose a tech-
nique to automatically detect fail regression tests of CI build.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 14

The technique is based on heuristics that filter and rank
changes that might introduce the regression. Zampetti et
al. [40] studied the use of automated static code analysis
tools in Travis CI. Their findings show that static code
analysis tools checks are responsible for only 6% of broken
builds. Miller [27] reported the use of continuous integration
in an industrial setting, and showed that compilation errors,
failing tests, static analysis tool issues, and server issues are
the most common reasons for build failures.

In the same line with this existing research, our work in-
vestigates the reasons software developers skip build com-
mit. However, we focus on the detection of build commits
that do not change the status of the build, or commits that
need not be built.

9.2 Usage of CI.

A number of recent papers examined the usage of CI in
the wild. Most of these studies performed surveys to gather
feedback from CI users in order to better understand why it
is so commonly used, as well as, what could be improved in
the process.

Hilton et al. [19] investigated the cost, benefits, and usage
of CI in open source projects. They found that CI improves
the release cycle, however, developers tend not to be famil-
iar with the many CI features. In another study, Hilton et
al. [18] studied the usage of CI in the proprietary projects.
Their findings showed that similar to open source projects,
developers of proprietary projects agreed that CI is efficient
to catch errors earlier and allows developers to worry less
about their builds while also providing a common build
environment for every contributor. However, CI can induce
long build times (which is specifically a problem that our
technique aims to solve) while also requiring a lot of set up
to use and automate the build process. Developers have also
complained about the lack of integration of new tools and
debugging assistance when a build fails. Leppnen et al. [22]
investigate the benefits of CI by conducting a semistructured
interview with developers from 15 companies. Their study
showed that faster feedback and more frequent releases are
the most mentioned benefits of using CI.

Beller et al. [1] analyzed CI builds of open source projects
written in Java and Ruby on GitHub. Their results showed
that the main reasons for failed builds are failing test.
They also found that getting results from CI builds re-
quires, on median, 10 minutes. Our technique helps reduce
this time by suggesting commits that can be CI skipped.
Vailescu et al. [38] studied the quality outcomes for open-
source projects that use CI services. Their findings showed
that using CI has some positive outcomes on the open-
source projects (e.g,. the productivity of project teams). Yu et
al. [39] studied the impact of using CI on software quality.
CI helps detecting bugs that are in a few files. Santos and
Hindle [29] use build statuses reported by Travis CI as a
measure of source code commit quality.

As shown in the aforementioned work, CI can improve
the quality and the productivities of software development.
However, getting results from CI can take considerable
time for some projects. Hence, our work addresses this
issue by detecting which commits can be CI skipped and
automatically labels them for the developers.

10 THREATS TO VALIDITY

In this section, we discuss the threats to internal, construct
and external validity of our study.

10.1 Internal validity
Internal validity concerns factors that could have influ-
enced our results. Our analysis heavily depends on the
TravisTorrent dataset, which links commits from GitHub
and Travis CI. There may be missing or incorrect links in
the dataset, which would impact our analysis. To examine
the correctness of these links, we manually checked the
accuracy of a subset of these links and found the links in
all of our cases to be correct. To identify the type of file
changes in a commit, we use a list of extensions of the
most common file types (e.g., readme files, etc.) provided
in previous work [37]. In some cases, the list of file types we
use may not be comprehensive. We also provide a list of all
the file extensions that are used in our study 9.

To gain insight on the importance and use of the CI skip
feature from developers, we conducted an online survey.
We contacted 512 developers, and received 40 (7.81%) re-
sponses. While this response rate may seem to be a small
number, it is within the acceptable range for questionnaire-
based software engineering surveys [33]. Also, since the
respondents to our survey voluntarily chose to respond, we
may suffer from self-selection bias. To mitigate this bias, we
tried to select our initial set of 512 developers randomly
from different projects. Moreover, social desirability bias
might have affected the response from our respondents,
causing their responses to support the idea of CI skipping
commits. To reduce this social desirability bias, we ran-
domly contacted developers who may or may not use the
CI skip feature provide by CI services.

10.2 Construct validity
Construct validity considers the relationship between the-
ory and observation, in case the measured variables do not
measure the actual factors. The rules we extracted are based
on the projects we examined. Hence, an examination of a
different set of projects may lead to different rules. However,
we examined more than 1,800 skip commits, which gives us
confidence in our extracted rules. In addition, in our manual
examination of commits in Section 4.2, the first author
performed the classification task since most of the rules
were very straightforward (e.g., a commit only changes code
comments or a help file). However, to ensure the validity
of our classification, we got the second author to classify a
statistically significant sample of 317 changes commits and
found their agreement to be excellent (Cohen’s Kappa value
of +0.96).

The CI skip commits we examined are commits that are
explicitly marked as so by developers. In some cases, devel-
opers may forget to label commits that should be skipped
with [ci skip] or [skip ci]. To evaluate the devised
rule-base technique we selected extra ten open source Java
projects where developers explicitly mark at least 10% of
the commits as skip commits. Also, the performance of the

9http://das.encs.concordia.ca/publications/
which-commits-can-be-ci-skipped/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 15

devised rule-based techniques shows that, on average, it
achieves an AUC of 0.73, which is modest performance. To
examine why our performance is not higher, we examine
all the cases that the rule-based flagged as CI skip com-
mits and the developers did not, and vice versa (i.e., false
positives/negatives), we found that 99% of the cases that
we flagged as CI skip commits are cases that should be
CI skipped, however, developers tended to miss them. For
the cases that we did not flag and developers skip them,
we found that developers do indeed change source code or
update dependences in these commits, but opt to skip the
CI process. We believe that it is very difficult to detect such
commits without the developers knowledge.

To answer our second research question, we measure
the time required for the project to finish the CI processes.
However, build-time heavily depends on the different con-
figurations of Travis CI (e.g., using commands in the wrong
phase, etc.), which may affect our results [15]. However,
since our findings are based on a large number of projects,
we expect the effect of the Travis CI configurations to be
minimal.

10.3 External validity
Threats to external validity concern the generalization of
our findings. Our study is based solely on Java projects,
hence our findings may not hold for projects written in
other programming languages. However, our approach of
defining the rule-based techniques can be easily generalized
to other programming languages by analyzing the skip
commits of the other projects written in different program-
ming languages. Second, the two datasets used in our study
present only open source project hosted on GitHub that do
not reflect proprietary projects. Furthermore, we examine
projects that use Travis CI for their continuous integra-
tion services, and different CI platforms could have more
advance features for controlling skip commits. That said,
Travis CI is the most popular CI services on GitHub10 that
have a basic feature of skipping unrequited build commits.

According to a recent study, Travis CI is the most pop-
ular CI service on Github [19]. In this study we focus on
implementing out technique using Travis CI. However, our
technique is applicable to other CI services (e,.g. Circle
CI11, AppVeyor12, and CodeShip13) that allow developers
to skip commit using the CI skip feature or other CI services
that provide a plugin to add this CI skip feature, such as
Jenkins14, Hudson15, and Bamboo16.

11 CONCLUSION

In this paper, we study CI skip commits that developers
tend not to build a project on. We analyze the commit
history of 392 open source Java projects provided by Trav-
isTorren dataset [2]. We first investigate the reasons why
developers CI skip commits and found that developers skip

10https://blog.github.com/2017-11-07-github-welcomes-all-ci-tools
11https://circleci.com/
12https://www.appveyor.com/
13https://codeship.com/
14https://jenkins.io/
15http://hudson-ci.org/
16https://www.atlassian.com/software/bamboo

Travis CI build for eight main reasons for which five can
be automated; changes that touch only documentation files,
changes that touch only source code comments, changes
that formatting source code, changes that touch meta files,
prepare for releases. We then propose a rule-based technique
to automatically detect the CI skip commits. We evaluate
the accuracy of the defined rule-based technique using a
testing dataset of ten Java projects that their developers use
Travis CI skip feature. We found that the technique achieves
F1-measure of 0.58 (AUC of 0.73) on average. We further
applied our technique on all the 392 studied commits, and
found that our technique is able to save up to 18.16% of a
project’s commits and amounting to a saving of 917 minutes
on average.

In addition, through an online survey of 40 developers,
we found that 75% of the developers believe it would be
nice, important or very important to have a technique that
automatically indicated CI skip commits. Developers also
indicated that they CI skip commits to save development
time and computational resources. Finally, we developed a
tool based on the proposed technique that is available for
public.

The results in this paper outline some directions for
future work. First, as we discuss in the section 7, examining
the impact of using of source code analysis on the improve-
ment of the rule-base technique that we will examine in the
future in more detail. Another interesting cases that require
more in-depth investigation are the cases where the build
commits are predicted to be CI skip commits but they result
in fail builds, we plan to conduct a study to understand such
cases. Finally, we want to investigate the potential of using
machine learning techniques to improve the performance of
detecting CI skip commits as potential future work as well.

REFERENCES

[1] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke
the build: An explorative analysis of travis ci with github. In
Proceedings of the 14th International Conference on Mining Software
Repositories, MSR ’17, pages 356–367. IEEE Press, 2017.

[2] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integra-
tion. In Proceedings of the 14th working conference on mining software
repositories, MSR ’17, 2017.

[3] T. F. Bissyand, F. Thung, D. Lo, L. Jiang, and L. Rveillre. Popularity,
interoperability, and impact of programming languages in 100,000
open source projects. In 2013 IEEE 37th Annual Computer Software
and Applications Conference, pages 303–312, July 2013.

[4] M. Brandtner, E. Giger, and H. Gall. Supporting continuous
integration by mashing-up software quality information. In Pro-
ceedings of the Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering, (CSMR-WCRE)
’14, pages 184–193. IEEE, 2014.

[5] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig. How
do centralized and distributed version control systems impact
software changes? In Proceedings of the 36th International Conference
on Software Engineering, ICSE ’14, pages 322–333. ACM, 2014.

[6] J. Campos, A. Arcuri, G. Fraser, and R. Abreu. Continuous test
generation: Enhancing continuous integration with automated test
generation. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 55–
66. ACM, 2014.

[7] J. Cohen. A coefficient of agreement for nominal scale. Educational
and Psychological Measurement, 20:37–46, 1960.

[8] M. A. Cusumano and R. W. Selby. Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets,
and Manages People. The Free Press, 1995.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 16

[9] E. d. S. Maldonado, E. Shihab, and N. Tsantalis. Using natural lan-
guage processing to automatically detect self-admitted technical
debt. IEEE Transactions on Software Engineering, 43(11):1044–1062,
2017.

[10] J. Downs, J. Hosking, and B. Plimmer. Status communication in
agile software teams: A case study. In Proceedings of 2010 Fifth
International Conference on Software Engineering Advances, ICSEA
’10, pages 82–87. IEEE, 2010.

[11] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley
Signature Series). Addison-Wesley Professional, 2007.

[12] S. Dsinger, R. Mordinyi, and S. Biffl. Communicating continuous
integration servers for increasing effectiveness of automated test-
ing. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 374–377. IEEE, Sept ASE
’12.

[13] J. L. Fleiss and J. Cohen. The equivalence of weighted kappa
and the intraclass correlation coefficient as measures of reliability.
Educational and Psychological Measurement, 33:613–619, 1973.

[14] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distill-
ing:tree differencing for fine-grained source code change extrac-
tion. IEEE Transactions on Software Engineering, 33(11):725–743, Nov
2007.

[15] K. Gallaba and S. McIntosh. Use and misuse of continuous
integration features: An empirical study of projects that (mis)use
travis ci. IEEE Transactions on Software Engineering, pages 1–1, 2018.

[16] R. J. Grissom and J. J. Kim. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[17] A. E. Hassan and K. Zhang. Using decision trees to predict the
certification result of a build. In Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, ASE ’06,
pages 189–198. IEEE Computer Society, 2006.

[18] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: Assurance, security, and flexibility.
In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE ’17, pages 197–207. ACM, 2017.

[19] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Us-
age, costs, and benefits of continuous integration in open-source
projects. In Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’16, pages 426–437.
ACM, 2016.

[20] A. Hindle, M. W. Godfrey, and R. C. Holt. Release pattern discov-
ery via partitioning: Methodology and case study. In Proceedings
of the Fourth International Workshop on Mining Software Repositories,
MSR ’07, pages 19–. IEEE Computer Society, 2007.

[21] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian. The promises and perils of mining github.
In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR ’14, pages 92–101. ACM, 2014.

[22] M. Leppnen, S. Mkinen, M. Pagels, V. P. Eloranta, J. Itkonen,
M. V. Mntyl, and T. Mnnist. The highways and country roads
to continuous deployment. IEEE Software, 32(2):64–72, Mar 2015.

[23] J. LinÂker, S. M. Sulaman, R. M. de Mello, M. Hst, and P. Rune-
son. Guidelines for conducting surveys in software engineering.
Technical report, 2015.

[24] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sad-
owski, L. Pollock, and J. Clause. An empirical study of practition-
ers’ perspectives on green software engineering. In Proceedings
of 2016 IEEE/ACM 38th International Conference on the Software
Engineering, ICSE ’16, pages 237–248. IEEE, 2016.

[25] K. Matsumoto, S. Kibe, M. Uehara, and H. Mori. Design of
development as a service in the cloud. In Proceedings of 15th
International Conference on the Network-Based Information Systems,
NBiS ’12, pages 815–819. IEEE, 2012.

[26] J. Micco. Tools for continuous integration at google scale -
youtube, August 2012.

[27] A. Miller. A hundred days of continuous integration. In Agile 2008
Conference, pages 289–293. IEEE, Aug 2008.

[28] T. Rausch, W. Hummer, P. Leitner, and S. Schulte. An empirical
analysis of build failures in the continuous integration workflows
of java-based open-source software. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR ’17.
ACM, 2017.

[29] E. A. Santos and A. Hindle. Judging a commit by its cover:
Correlating commit message entropy with build status on travis-
ci. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR ’16, pages 504–507. ACM, 2016.

[30] C. B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Transaction Software Engineering, 25(4):557–572,
1999.

[31] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge.
Programmers’ build errors: A case study (at google). In Proceedings
of the 36th International Conference on Software Engineering, ICSE’ 14,
pages 724–734. ACM, 2014.

[32] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang. An industrial
study on the risk of software changes. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 62:1–62:11. ACM, 2012.

[33] J. Singer, S. E. Sim, and T. C. Lethbridge. Software engineering
data collection for field studies. In Guide to Advanced Empirical
Software Engineering, pages 9–34. Springer London, 2008.

[34] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann.
Improving developer participation rates in surveys. In Proceedings
of the 6th International Workshop on Cooperative and Human Aspects
of Software Engineering, CHASE ’13, pages 89–92. IEEE, May 2013.

[35] C. Thompson and D. Wagner. A large-scale study of modern code
review and security in open source projects. In Proceedings of the
13th International Conference on Predictive Models and Data Analytics
in Software Engineering, PROMISE ’17, pages 83–92, New York, NY,
USA, 2017. ACM.

[36] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Sere-
brenik, P. Devanbu, and V. Filkov. Gender and tenure diversity
in github teams. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’15, pages 3789–3798,
New York, NY, USA, 2015. ACM.

[37] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On
the variation and specialisation of workload–a case study of the
gnome ecosystem community. Empirical Softw. Engg., 19(4):955–
1008, 2014.

[38] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality
and productivity outcomes relating to continuous integration in
github. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, FSE ’15, pages 805–816. ACM, 2015.

[39] Y. Yu, B. Vasilescu, H. Wang, V. Filkov, and P. Devanbu. Initial
and eventual software quality relating to continuous integration
in github. arXiv preprint arXiv:1606.00521, 2016.

[40] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta.
How open source projects use static code analysis tools in con-
tinuous integration pipelines. In Proceedings of the 14th working
conference on mining software repositories, MSR ’17. ACM, 2017.

[41] C. Ziftci and J. Reardon. Who broke the build? automatically iden-
tifying changes that induce test failures in continuous integration
at google scale. In In preceding of 39th International Conference on
Software Engineering, ICSE’ 17, Buenos Aires, Argentina, 2017.

Rabe Abdalkareem is a PhD candidate in the
Department of Computer Science and Software
Engineering at Concordia University, Montreal.
His research investigates how the adoption of
crowdsourced knowledge affects software de-
velopment and maintenance. Abdalkareem re-
ceived his masters in applied computer science
from Concordia University. His work has been
published at premier venues such as FSE, IC-
SME and MobileSoft, as well as in major journals
such as IEEE Software, EMSE and IST. Con-

tact him at rab abdu@encs.concordia.ca; http://users.encs.concordia.
ca/rababdu.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 17

Suhaib Mujahid is a Ph.D. student in the De-
partment of Computer Science and Software En-
gineering at Concordia University. He received
his masters in Software Engineering from Con-
cordia University (Canada) in 2017, where his
work focused on detection and mitigation of
permission-related issues facing wearable app
developers. He did his Bachelors in Informa-
tion Systems at Palestine Polytechnic University.
His research interests include wearable applica-
tions, software quality assurance, mining soft-

ware repositories and empirical software engineering. You can find more
about him at http://users.encs.concordia.ca/smujahi.

Emad Shihab is an associate professor in the
Department of Computer Science and Soft-
ware Engineering at Concordia University. He re-
ceived his PhD from Queens University. Dr. Shi-
habs research interests are in Software Quality
Assurance, Mining Software Repositories, Tech-
nical Debt, Mobile Applications and Software Ar-
chitecture. He worked as a software research in-
tern at Research In Motion in Waterloo, Ontario
and Microsoft Research in Redmond, Washing-
ton. Dr. Shihab is a member of the IEEE and

ACM. More information can be found at http://das.encs.concordia.ca.

Juergen Rilling is a professor in the De-
partment of Computer Science and Software
Engineering at Concordia University, Montreal,
Canada. He obtained a Diploma degree in com-
puter science from the University of Reutlingen,
a M.Sc. in Computer Science from the University
of East Anglia and his Ph.D. from the Illinois
Institute of Technology, Chicago, US. The gen-
eral theme of his research has been on pro-
viding software maintainers with techniques and
methodologies to support the evolution of global

software ecosystems. He also serves on the program committees of nu-
merous international conferences and workshops in the area of software
maintenance and program comprehension and as a reviewer for many
of the major journals in his research area.

