
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 1

A Machine Learning Approach to Improve the
Detection of CI Skip Commits

Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, Senior Member, IEEE

Abstract—Continuous integration (CI) frameworks, such as Travis CI, are growing in popularity, encouraged by market trends towards
speeding up the release cycle and building higher-quality software. A key facilitator of CI is to automatically build and run tests
whenever a new commit is submitted/pushed. Despite the many advantages of using CI, it is known that the CI process can take a very
long time to complete. One of the core causes for such delays is the fact that some commits (e.g., cosmetic changes) unnecessarily
kick off the CI process. Therefore, the main goal of this paper is to automate the process of determining which commits can be CI
skipped through the use of machine learning techniques. We first extracted 23 features from historical data of ten software repositories.
Second, we conduct a study on the detection of CI skip commits using machine learning where we built a decision tree classifier. We
then examine the accuracy of using the decision tree in detecting CI skip commits. Our results show that the decision tree can identify
CI skip commits with an average AUC equal to 0.89. Furthermore, the top node analysis shows that the number of developers who
changed the modified files, the CI-Skip rules, and commit message are the most important features to detect CI skip commits. Finally,
we investigate the generalizability of identifying CI skip commits through applying cross-project validation, and our results show that the
general classifier achieves an average 0.74 of AUC values.

Index Terms—Continuous Integration, Travis CI, Build Status, Machine Learning.

F

1 INTRODUCTION

Continuous integration (CI) is the process that provides
developers with the ability to automatically build and test
projects on every commit. In fact, prior work showed that
CI increases developers’ productivity and helps improve
software quality [62]. Therefore, some of the biggest soft-
ware companies such as Microsoft, Netflix, Facebook, and
Google significantly use CI process [10], [44], [50], [69].
Moreover, open source projects have recently started using
CI processes thanks to the popularity of online CI services
such as Travis CI [5], [29].

However, like any solution, CI processes have several
drawbacks. CI processes can take a very long time to
complete [41], especially for large projects [10]. This can
be particularly problematic for developers who kick off the
CI process after each commit. The long completion time is
mainly because the CI process needs to build and test in
a clean container from scratch every time a new commit is
pushed to the repository. This overhead can affect both, the
speed of software development and the productivity of the
developers (Duvall et al. [12], p. 87).

Due to the increased adoption of CI processes, most of
the previous work focused on the study of its usage and
benefits (e.g,. [19], [36], [62]), reasons for failing builds [52],
and even detect and fix CI configuration errors [19]. How-
ever, very few studies try to improve the efficiency of the CI
process, especially for large projects that use CI processes.
Recently, Abdalkareem et al. [1] investigated the reasons

• R. Abdalkareem, S. Mujahid and E. Shihab with the Data-driven Analysis
of Software (DAS) Lab at the Department of Computer Science and
Software Engineering, Concordia University, Montreal, Canada.
E-mail: rab abdu,s mujahi, eshihab@encs.concordia.ca

Manuscript received June 02, 2019; revised August 26, 2019.

why developers skip the CI process and found that amongst
other developers CI skip commits to saving development
time and computation resources. In their effort to help de-
velopers automatically flag commits that can be CI skipped,
Abdalkareem et al. [1] proposed a rule-based technique that
achieves moderate performance and it is highly prone to
false negative. A major problem with using the rule-based
technique is that it is general and it does not consider the
specific characteristics of a project. In the case of detecting CI
skip commits, for example, different projects have different
types of files used for documentation and also their team’s
development context is different.

Therefore, the main goal of our work is to automatically
detect and label commits that can be CI skipped. To do so,
we propose the use of machine learning (ML) techniques
to detect CI skip commits. We started by analyzing ten
open source Java projects that are using Travis CI as a CI
service where their developers have explicitly CI skipped a
number of their commits. Then, we extract 23 commit-level
features and build a decision tree classifier to determine
whether a commit is a CI skip commit or not. To evaluate
the effectiveness of using the ML technique, we perform an
empirical study to answer the following questions:

RQ1: Can we accurately detect CI skip commits using ma-
chine learning? We built a decision tree classifier using 23
features extracted from project repositories and compare
its performance to the baseline, which is the ratio of CI
skip commits in the studied projects. The results show that
a decision tree classifier achieves higher F1-score of 0.79
(AUC = 0.89), on average. This improvement equates to an
average improvement of 2.4X by the decision tree classifier,
when it is compared to our baseline.

Then, we examine the most important features used by
the decision tree to indicate CI skip commits, in order to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 2

provide insights to practitioners as to what factors best
indicate commits that can be CI skipped. This leads us to our
RQ2: What features are the best indicators of CI skipped commits?
We find that the number of developers who changed the
modified files, the devised rules, and the commit message
written by the developers are the best indicators of CI
skip commits. Lastly, to examine the generalizability of our
proposed technique, we determine the effectiveness of our
ML technique in predicting CI skip commits in across-
projects. Particularly, we ask the RQ3: How effective is the
machine learning classifier when applied on cross-projects? We
build a general classifier and evaluated its performance
using cross-projects validation. Our results show that our
classifier achieves an average F1-score of 0.55 (AUC = 0.74),
which is lower than the within-project classifiers, however, it
is still a promising classifier that can be practically used. The
result also show that cross-project classifier performance
corresponds to an average F1-score improvement of 1.5X
over our baseline.
To sum up, this work makes the following contributions:
• To the best of our knowledge, this is the first work to

propose an ML technique to detect commits that can be
CI skipped.

• We used 23 commit-level features in a machine learning
classifier (decision tree) to detect CI skip commits.

• We conduct an empirical study to evaluate the perfor-
mance of ML techniques where we examine 1) the perfor-
mance of the CI skip classifier within-projects and across-
projects. 2) We identify the most important indicators of
CI skip commits used by the machine learning classifier.
The remainder of the paper is organized as follows.

Section 2 presents our qualitative study about practitioners’
perspective on the skipping of the CI process and discuss
motivating examples. We describe our case study design in
Section 3. We present our case study results in Section 4. We
discussed our results in Section 5. The work related to our
study is discussed in Section 6 and the threats to validity in
Section 7. Section 8 concludes the our paper.

2 MOTIVATION

At the time that the study was conducted there is little
written in the scientific literature on CI skip commits except
for the recent work by Abdalkareem et al. [1]. However,
during our investigation of the topic, we found a rich
discussion thread on the Github issue tracker of the Travis
CI project. In that thread, many developers argue that the
CI process should not be run on every commit, and Travis
CI developers are asked to provide an advanced mechanism
to automatically CI skip specific commits [35]. To gain more
insight into the problem of CI skipping a commit from real-
world developers, we manually examine the developers’
opinions that are provided in a free-text. We first mined the
thread from GitHub and collected the developers’ contribu-
tions to the thread, which are in free-text. We also collected
some background metadata of the developers that include
the number of repositories they own, stars they received,
and their followers on Github. Then, we perform a formal
qualitative analysis, to elicit and understand how important
the problem of CI skipping a commit is for developers [51].

TABLE 1
Background of the Thread Participants.

Number of Minimum Median Average Maximum

Repositories 3 69 97.21 427
Followers 1 69 158 1,900
Stars 0 75 648.9 9,000

The first two authors read the free-text contribution of the
developers, and iterative coding them.

We found that there are 47 unique developers that
participated in the thread. Table 1 shows the minimum,
median, average, and maximum number of repositories,
stars, and followers for each developer. We observe that
the developers have a high number of owned repositories
with 69 on average. We also see a similarly high number
for the stars and followers. These observations indicate
that the developers are expert with knowledge of using
different development techniques that include the use of the
CI processes.

Our manual investigation reveals that 98% of the devel-
opers believe that it is essential to have the ability to CI skip
some commits automatically. For example, one developer
explained the need for such a feature as follows; “Both
software and documentation are in the same repository. I have
a very large and slow testsuite which tests the software. I don’t
want to re-run that testsuite just because I changed something
in the documentation.” [59]. Other developers reported some
specific cases as one developers said: “I also need this feature
but my use case is a bit more complex. I run tests on both Linux
and OSX (via travis) and I would like to skip the build on either or
OSX or Linux depending on which files were changed in the GIT
commit.” Additionally, another developer said “Something
like this would be really useful for our use-case case too where we
have both client and server in the same repo. Having the ability to
disable the server-side tests when only the client files have changed
would save a lot of time running pointless tests. As you can see in
our travis.yml we have a matrix for various node/db configs and
then an include that adds the environment-independent client test
suite at the end. Every time we make a client-only change we have
1hr of total build time on unrelated test suites before the client
test suite even begins.” [2]. In addition, developers believe
that building on every commit can be a waste of resources,
which has been reported by Abdalkareem [1] as well, for
example, another developer supports this by saying: “This
means that unwanted tasks still have to spin up a machine and do
an initial git clone, which is rather wasteful of limited resources
(the ”skipped” tasks are shown as taking about 30s; idk how much
hidden backend cost there is).” [23]

To illustrate the problem that developers face when iden-
tifying and flagging commits as CI skip commits, we show
real-life examples taken from the GeoServer project [45].
Table 2 shows the details of four Travis CI builds from the
GeoServer project. For each build, the table shows the build
number, the number of jobs, the total duration, and the
commit message written by the developer for the change
that triggered the Travis CI build. As shown in the table,
the four builds run for approximately an hour and a half
and when we look at the commit message, we observe that
all these builds have been triggered due to simple changes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 3

2

1

Fig. 1. Example of cosmetic code change and its build result mined from the GeoServer project. On the left, the figure shows the commit change
difference and the type of code change (part (1)). On the right, the figure shows the build result of GeoServer project on this commit. It also shows
that the time that token to finish the build (part (2)).

TABLE 2
Examples of Travis CI builds taken from the GeoServer project. The

total duration of a build is presented in Hours (hr), Minutes (min), and
Seconds (sec).

Build Id #Jobs Total Duration Build Reason

11097 3 1hr 37min 6sec “Update
PULL REQUEST TEMPLATE.md”

10995 3 1hr 34min 56sec “Adding some info to docu-
mentation, about the NoData
indexer’s propert”

10904 3 1hr 38min 58sec “fixed formatting”
10508 3 1hr 24min 24sec “Merge pull request #3325

from aaime/h2 migrate docs”

in the project, i.e., either a change in the readme file or
formatting the source code. For example, Figure 1 shows the
details of the CI build #10904 (anonymized). It first shows
the diff of the commit change (left side) that triggers the CI
process from GitHub. It also shows the details of the build
result from Travis CI. We see that the commit changes that
trigger the CI process are just a simple formatting change
(1) and this simple formatting requires more than an hour
and a half of total CI run time (2).

Overall, the richness and thoughtfulness of this dis-
cussion highlighted the need for developing an advanced
technique to detect CI skip commit automatically. In the next
sections, we describe our ML technique to automatically
detect CI skip commits that do not need to trigger the CI
process.

3 CASE STUDY DESIGN

The main goal of our study is to determine the commits that
can be CI skipped. To achieve this goal, we propose the use
of machine learning techniques. We begin by collecting data
of projects whose developers use the CI skip feature and
explicitly skip a number of their commits, which we use
as a labeled dataset. Then, we mine the selected software
repositories to extract commit-level features and use them
as dependent variables in our machine learning classifier. In
the following subsections, we detail our labeled dataset and
data extraction and processing steps.

3.1 Test Dataset

In this subsection, we introduce the dataset used in our
study. To determine how effective the ML techniques are
in detecting CI skip commits, we need to have a labeled
test dataset that we can apply the ML techniques on. Our
first criteria to build our testing dataset is to have projects
with a sufficient number of CI skipped commits that are
explicitly marked by developers. We resort to using the
dataset provided in our previous work [1]. To build that
dataset, we started by identifying projects that have a suf-
ficient number of their commits skip the CI process. To do
so, we searched GitHub for non-forked Java projects that use
Travis CI and where their developers use the ‘[ci skip]’
feature. To search for these projects on GitHub, we first use
the BigQuery GitHub dataset, which provides a web-based
console to allow the execution of a SQL query on the GitHub
data [22]. We searched for all non-forked projects that 1) are
written in the Java programming language; 2) contains the
keywords ‘[ci skip]’ or ‘[skip ci]’ in more than
10% of their commit messages; and 3) do not exist in the
TravisTorrent dataset [6]. We choose projects with > 10%
of skipped commits, since this is a good indicator that the
developers of those projects are somehow familiar with the
Travis CI skip feature. We also exclude the projects that exist
in the TravisTorrent dataset, since in our prior work [1], we
extracted the CI skip rules based on a manual analysis of
the projects in the TravisTorrent dataset. It is important to
note that using our previous build dataset [1] allows us to
put our analysis in perspective and to be able to compare
the performance of our ML technique to the state-of-the-art.
The dataset contains ten open source projects written in Java
that have some of their commits labeled as CI skip commit
by developers. Also, it is worth mentioning that we only
consider commits after the introduction of Travis CI to a
project since it presents the period of the project life where
its developers use the CI skip features.

Table 3 presents some statistics of our studied projects.
It shows the number of commits after the introduction of
Travis CI service to the project, and the percentage of CI
skipped commits in the ten Java projects. In total, there are
3,062 (average = 306.20) commits in all the studied projects.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 4

TABLE 3
Shows Projects in the Testing Dataset.

Project LOC Classes Methods Time Period # of Commits§ % of Skipped
Commits

TracEE Context-Log 12,386 345 1,426 2014-12-12 - 2017-03-14 216 29.63
SAX 7,200 75 438 2015-06-20 - 2017-03-23 372 23.66
Trane.io Future 5,185 119 898 2017-02-05 - 2017-08-04 247 18.62
Solr-iso639-filter 2,335 82 299 2013-08-20 - 2015-06-16 408 41.42
jMotif-GI 4,689 54 336 2015-06-20 - 2017-03-29 345 12.17
GrammarViz 6,798 89 403 2014-08-22 - 2017-03-13 417 13.67
Parallec 12,452 242 1,112 2015-10-28 - 2017-07-09 129 56.59
CandyBar 13,702 206 1,025 2017-02-22 - 2017-09-26 242 69.01
SteVe 14,078 358 1,332 2015-10-07 - 2016-11-16 298 19.46
Mechanical Tsar 4,008 108 478 2015-05-06 - 2017-03-19 388 34.54

Average 8,283.30 167.80 774.70 - 306.20 31.88
Median 6,999.00 113.50 688.00 - 321.50 26.65
§#commits after the introduction of Travis CI service to the project.

The table also shows that the percentage of explicitly CI
skipped commits range between 12.17 - 69.01% for the
projects.

3.2 Features for CI Skip Commit Classification
Since our goal is to perform commit-level predictions to
decide which commits should be CI skipped, we resorted
to using the most commonly used commit-level features.
These features were used in the past to predict, for example,
whether a commit would introduce a bug or not [17], [30],
[32], [40], [67]. However, we believe that some of these
features can be used to determine the level of complexity of
a commit, hence, providing useful information as to whether
a commit should be CI skipped or not. We refer interested
readers to the original paper by Kamei et al. [32] for the
full details about these features. However, to make this
paper self-sufficient, we describe the features used briefly.
We extract these features using CommitGuru tool [49].

In addition to the previously mentioned features, we also
extracted five specific features based on the rules that are re-
lated to CI skip commits. These features have been proposed
by Abdalkareem et al. [1], and they are devised based on a
manual examination of more than 1,800 CI skipped commits
from the TravisTorrent dataset [6]. Finally, we employ the
change’s description, written by the developer as a feature,
since prior work showed that textual descriptions of a
commit provide valuable and discriminative information
about changes [60]. For the sake of completeness, we present
the features used in Table 4 and describe them next.
Diffusion features: Diffusion features present the prop-
agation of the change through the software system. We
computed four measures to present diffusion features which
are the number of modified subsystems, directories, files,
and entropy. The entropy measures how the change is
distributed across the different files.
Size features. These features measure the size of code mod-
ified in a commit. For each commit, we measure the number
of lines add and deleted, and number of lines of code in a file
before the change. We also counted the number of different
type of files changed in a commit using file extensions.
Purpose features: For each change, we categorize the type of
maintenance performed by the changes. The purpose group
contains three features: the type of maintenance activities, if

the change is a defect fixing changes, and if the commit
is a merge commit. We extract the first two features by
analyzing the commit message of the change and search
for some keywords. For identifying defect fixing commits,
we look for keywords such as “fix”, “bug”, or “defect” and
their variants (i.e., capitalized first letter or, all capitalized).
A similar approach to determine defect fixing changes was
used in other work [32], [56]. Also, for identifying the main-
tenance activities, we use a different set of keywords such as
“refactoring”, “improve”, or “enhance” and their variants [49].
For identifying merge commit, we consider the commit that
have two parents as a merge commit.
History features: Three features are computed in the history
features which capture the history of a module modified
in the change. We measure history features using; 1) the
number of developers that changed the modified file in the
past. 2) The average time interval between the current and
the last time these files were modified. 3) the number of
unique last changes of the modified files.
Experience features: Experience features estimate the expe-
rience of the developer who made the change. We again use
past changes to compute the developer experience features.
We compute three features related to developer experience
that are; 1) developer experience of change by computing
the number of changes made by the developer before the
current change; 2) recent developer experience, measured as
1

1+n , where n is measured in years; 3) developer experience
on subsystem modified by the change, which measures the
number of previous changes performed by the developer to
the changed subsystem(s).
CI-Skip Rule features: We use the five features that are
related to CI skip commits that are devised by Abdalka-
reem et al. [1]. These features are rules that are extracted
based on analyzing more than 1,800 explicit CI skip commits
marked by developers. We provide a detailed description
and a rationale of each of features in Table 4.
Textual features: For each commit message that is written
by the developer, we preprocess the commit message by
doing the following: (1) we remove any identification of
skip commit by deleting the keyword ‘[ci skip]’ or its
variation ‘[skip ci]’ from the commit message content,
(2) we remove English stop words, (3) we remove numbers,
or special characters, and (4) we lowercase the terms. We

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 5

TABLE 4
Features Used to Identify CI Skip Commits and the Rational of Using Them.

Dim. Name Definition (Inspired from) Rational

D
if

fu
si

on

NS Number of modified subsystems ([17], [32],
[40]).

Changes that touch many subsystems are not, in general, trivial changes which
are likely not to be CI skipped.

ND Number of modified directories ([17], [30],
[32], [40], [67]).

Build commits that are based on changing several directories are more likely not
to be CI skipped.

NF Number of modified files ([17], [30], [32],
[40], [67]).

Build commits that changes multiple files are more likely to modify source code
files which should be built.

EN Distribution of modified code across each
file (i.g., Entropy) ([17], [30], [32], [67]).

Changes with high entropy are more likely to have a large number of file changes
that make the changes more complicated and have high chances to modify the
source code.

Si
ze

LA Lines of code added ([17], [30], [32], [40],
[67]).

It is clear that the more lines of code added shows the need to build the system
and run the test cases.

LD Lines of code deleted ([17], [30], [32], [40],
[67]).

The more lines of code deleted the more the need to run the continuous
integration process.

LT Lines of code in a file before the change (
[17], [30], [32], [67]).

The size of the source code file that changed in a commit indicates the need for
running the continuous integration process.

TFC The type of files change in the commit iden-
tified by their extensions([20], [26]).

The type of files changed in the commit indicate the need for the CI process to
be run (i.g., changes related to source code files).

Pu
rp

os
e

FIX Whether or not the change is a defect fix (
[17], [30], [32], [67]).

Fixing a defect means that more code is modified or added that need to be tested
after the change through running the continuous integration process.

MR If the commit is a merge commit. The number of parents of a commit shows if the commit is a merge commit
which required to running the continuous integration process to show that the
merged code integrated safely to the project.

CFT The type of maintenance activities pre-
formed.

Type of maintenance activities indicates the number of changes to the software
project. As a result, it suggests the need to build and test the project.

H
is

to
ry

NDEV The number of developers that changed the
modified files ([17], [30], [32], [40], [67]).

The larger the number of developers changed the modified files, the risker the
changes are that require running the continuous integration process to make
sure the changes do not break the project or fail tests.

AGE The average time interval between the last
and the current change ([17], [30], [32], [40],
[67]).

The lower the AGE, the more likely a defect will be introduced, and it shows the
need to build and test the code.

NUC The number of unique changes to the mod-
ified files ([17], [30], [32], [40], [67]).

The larger the NUC, the more likely that commit introduces a defect to the
projects which show the need to build and test the project.

Ex
pe

ri
en

ce

EXP Developer experience ([17], [30], [32], [40],
[67]).

Experienced developers are more likely to be knowledgeable about the type of
changes that can be CI skipped.

REXP Recent developer experience ([17], [30],
[32], [40], [67]).

A developer who has often modified the files recently is more familiar with
source code and recognize the type of changes that can be CI skip.

SEXP Developer experience on a subsystem ([17],
[30], [32], [40], [67]).

A developer who is familiar with the subsystems modified by a commit is more
likely to CI skip commits that do not need to be build or test.

Te
xt CM Terms appear in the commit messages. We

weight the terms using tf-tdf after removing
English stop words.

Commit message are more likely to contain useful information about the type of
changes in the commit (e.g., changes a readme files).

C
I-

sk
ip

R
ul

es

DOC If the commit changes non-source code files
([1]).

Based on the devised rules if a commit changes mainly non-source code, it is
likely to be CI skipped.

MET If the commit modifies meta files such as git
ignore ([1]).

Based on the devised rules if a commit changes mainly meta files, it is likely to
be CI skipped.

COM If the commit modifies source code com-
ments ([1]).

From the devised rules if the changes in a commit are mainly related to source
code comments, it is likely to be a CI skip commit.

FRM If the commit changes the formating of the
source code ([1]).

From the devised rules if the changes in a commit are mainly related to
formatting source code, it is likely to be a CI skip commit.

BLD If the commit modifies the version in the
project ([1]).

From the devised rules if the changes in a commit are mainly preparing for
release or changing release version, it is likely to be a CI skip commit.

then convert the terms that appear in the commit messages
into numerical values. To do so, we weigh the terms using
Term Frequency - Inverse Document Frequency (TF/IDF)
weighting scheme. TF/IDF is a statistical measure that is
used to show how important a word is to a document in a
collection. Table 4 also presents the rationale for using this
feature.

3.3 Classification Models
To perform our prediction, we leveraged a decision tree
classifier. We chose to use a decision tree to classify whether
a commit is a CI skip commit or not since it provides
an intuitive and easy to explain classification model. This
enables developers to easily understand why a decision to

skip a commit was made. In contrast, most other classifiers
tend to produce “black box” models that do not explain
which features affect the classification outcome [34]. We also
discuss the use of other ML classifier in Section 5.1.

To build the decision tree classifier, we used the built-in
libraries provided by Weka, a Java-based machine learning
framework [24]. The well-known algorithm for building
decision trees is C4.5 [46], which first creates a decision-tree
based on the feature values of the training data such that
internal nodes denote the different features, the branches
correspond to the value of a certain features and the leaf
nodes correspond to the classification of the dependent
variables. The decision tree is made recursively by identi-
fying the feature(s) that discriminate the various instances

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 6

most clearly, i.e., having the highest information gain [46].
Once a decision tree is made, the classification for a new
instance is done by checking the respective features and
their values. In our work, we implement the decision tree
classifier using the default parameter settings on top of
Weka implementation [24].
Dealing with imbalanced data: One common issue with soft-
ware engineering data is data imbalance [57]. Data imbal-
ance occurs when one class occurs much more than the
other in the dataset. In this case, the decision tree trains
to learn from the features affecting the majority cases than
the minority cases. As shown in Table 3, our testing dataset
has on average only 31.88% (median = 26.65%) that labeled
as CI skip commits, which means that the majority of the
cases are not skipped commits. To deal with the imbalance
problem in our dataset, we rely on the use of the re-sampling
algorithm in Weka [24] to perform the under-sampling on
the training data. We use the option “-B 1.0” (i.e., ensure the
class distribution is uniform in the output data), and “- Z
100” (i.e., the final sample size is the same as the original
dataset). It is important to note that we only applied the re-
sampling step on the training dataset. We did not re-sample
the testing dataset since we want to evaluate our classifier
in a real-life scenario, where the data is imbalanced.

3.4 Performance Evaluation

To evaluate the performance of the ML technique, we
compute precision, recall, and F1-score. In our study, recall
is the percentage of correctly classified Skip Commits rela-
tive to all of the commits that are actually skipped (i.g.,
Recall = TP

TP+FN). Precision is the percentage of detected
skipped commits that are actually skipped commits (i.e.,
Precision = TP

TP+FP), where TP is the number of skip
commits that are correctly classified as CI skip commits;
FP denotes the number of non CI skip commits classified
as skip commits; and FN measure the number of classes
of actual CI skip commits that identified as non skipped
commits. We then combine both precision and recall of our
classification technique in detecting skip commits using the
well-known F1-score (i.e., F1-score = 2× Precision×Recall

Precision+Recall).
In addition, to mitigate the limitation of choosing a fixed

threshold when calculating precision and recall, we also
present the Area Under the ROC Curve (AUC) values. AUC
is computed by measuring the area under the curve that
plots the true positive rate against the false positive rate,
while varying the threshold that is used to determine if
a commit is classified as skipped or not. The main merit
of the AUC is its robustness toward imbalanced data since
its value is obtained by varying the classification threshold
over all possible values. The AUC has a value that ranges
between 0-1, and a larger AUC value indicates better classi-
fication performance.

4 CASE STUDY RESULTS

In this section, we present the results of our case study with
respect to the three research questions. For each research
question, we present the motivation for the question, the
approach to answer the question, and results.

TABLE 5
Performance of the Decision Tree Technique.

Project Precision Recall
F1-Score
(Relative
F1-Score)

AUC

TracEE Context-Log 0.95 0.95 0.94 (2.6X) 0.96
SAX 0.76 0.92 0.83 (2.6X) 0.93
Trane.io Future 0.86 0.91 0.87 (3.2X) 0.94
Solr-iso639-filter 0.88 0.93 0.90 (2.0X) 0.95
jMotif-GI 0.75 0.86 0.78 (3.9X) 0.91
GrammarViz 0.57 0.81 0.66 (3.1X) 0.91
Parallec 0.91 0.90 0.89 (1.7X) 0.88
CandyBar 0.88 0.80 0.83 (1.4X) 0.82
SteVe 0.54 0.70 0.59 (2.1X) 0.83
Mechanical Tsar 0.59 0.67 0.62 (1.5X) 0.74

Average 0.77 0.85 0.79 (2.4X) 0.89
Median 0.81 0.88 0.83 (2.3X) 0.91

4.1 RQ1: Can we accurately detect CI skip commits
using machine learning?
Motivation: Since building the project after every commit
can be wasteful, we want to be able to effectively determine
commits that can be CI skipped. Even though prior work
propose a rule-based techniques to automatically detect
CI skip commit [1], their evaluation shows a moderate
performance. Thus, the main goal of this research question
is to investigate the use of supervised machine learning
technique to assist developers in automatically identifying
CI skip commits.
Approach: For each project in the testing dataset (Sec-
tion 3.1), we use the selected 23 commit-level features shown
in Table 4 to train a decision tree classifier to predict whether
a commit is a CI skip commit or not. However, since a single
source code commit can perform more than one change,
some of the individual CI-Skip rules can be true and the
rest is not true for the same commit. For example, a commit
can change the source code comments and at the same time
add source code. To make sure that our CI-Skip rules flag
the CI skip commit, we combine the rules and then add
its value as one feature to the decision tree. After that, for
each project, we use 10-fold cross validation [14]. First, we
divide the dataset for each project into 10 folds. We use 9
folds (i.e., 90% of the data) to train the decision tree, and
use the remaining one fold to evaluate the performance of
the classifier. We run this process 10 times for each fold (i.e.,
1x10-folds).

Finally, to evaluate the performance of the decision tree
classifier in detecting CI skip commits, we compute the well-
known evaluation metrics which are precision and recall
and their combination F1-score as explained in Section 3.4
ten times for each fold. Also, we computed the Area Under
the ROC Curve (AUC) values. Then, to come up with one
value for the ten runs, we compute the average of the
evaluation metrics for 10-folds ten times (i.e,. 1x10-fold) for
every project in our testing dataset.

Since one of main goals of using machine learning tech-
niques is to improve the detection of CI skip commits, we
measure how much better the performance of the decision
tree is compared to the baseline for each project. In our case,
the baseline classifier is a classifier where the precision is
equal to the ratio of CI skip commits in the overall dataset

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 7

P
er

fo
rm

an
ce

 V
al

ue
s

Precision Recall F1−Score AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.77
0.85

0.79
0.89

0.57
0.68

0.58

0.73

Rule Based
Decision Tree

Fig. 2. Beanplots comparing the distributions of Precision, Recall, F1-
score values for Rule-based and Decision Tree techniques. Dotted
horizontal line shows the overall median.

(since this is the likelihood that a CI skipped commit will be
detected through a baseline/random classifier) and the re-
call is 0.5 (since there are two classes to choose from, skipped
or not) [53]. Then, we compare the values of F1-score of the
decision tree against the baseline by calculating the relative
F1-score (i. e,. Relative F1− score = decsion tree F1−score

Baseline F1−score).
Relative F1-score shows how much better our classifier does
compared to the baseline. For instance, if a baseline achieves
a F1-score of 10%, while the decision tree classifier achieves
a F1-score of 20%, then the relative F1-score is 20

10 = 2X . In
other words, the decision tree classifier performs twice as
accurate as the baseline classifier. It is important to note that
the higher the relative F1-score value the better the classifier
is at detecting CI skip commits.

In addition, to put our analysis in perspective, we com-
pare the performance of our ML technique to the state-of-
the-art technique, which is the rule-based technique pro-
posed by Abdalkareem et al. [1]. To do so, we run the
rule-based technique on our testing dataset by using the
publicly available tool developed by Abdalkareem et al. [1]
and compare the results of the two techniques.
Results: Table 5 presents the precision, recall, F1-score (rel-
ative F1-score shown in parentheses), and AUC value of
the decision tree classifier for the ten studied projects in
our test dataset. First, the precision values obtained by the
decision tree classifier range between 0.54 and 0.95, with
an average of 0.77 (median = 0.81) while the recall values
range between 0.67 and 0.95 with average value of 0.85
(median = 0.88). Also, the F1-score achieves values in the
range between 0.59 and 0.94, with an average of 0.79 and
median of 0.83. The values of the area under the ROC curve
(AUC) indicate that the decision tree is effective in detecting
CI skip commits, achieving AUC values ranging between
0.74 - 0.96 with an average of 0.89.

Also, Table 5 shows the relative F1-score when compar-
ing the performance of decision tree to the baseline. The
computed relative F1-scores show an improvement of 2.4X
on average over the baseline.

In particular, for all the ten projects, the decision tree out-
performs the baseline with relative F1-score values ranging
between 1.4X and 3.9X .

To compare the performance of the decision tree clas-
sifier against the rule-based technique [1], we present the
distribution of precision, recall, F1-score, and AUC values

TABLE 6
Top Node Analysis for each Project.

Project Feature Occurrence

TracEE Context-Log CI − Skip Rules 8
CM 2

SAX NDEV 5
CI − Skip Rules 2
NUC 1
CM 1
TFC 1

Trane.io Future EXP 9
NUC 1

Solr-iso639-filter NUC 9
SEXP 1

jMotif-GI NDEV 10
GrammarViz CI − Skip Rules 10
Parallec CM 10
CandyBar TFC 9

CM 1
SteVe SEXP 10
Mechanical Tsar NDEV 6

LD 4

for the ten studied projects. Figure 2 summarizes the distri-
bution of precision, recall, F1-score, and AUC values for the
ten studied projects (each compared beanplot shows the dis-
tribution of evaluation metrics for the decision tree and the
rule-based techniques). The figures show that in all cases the
decision tree classifier outperform the rule-based approach.
Figure 2 shows that the decision tree classifier outperforms
the rule-based techniques achieving an improvement of 56%
on average (median = 41%).�

�

�

�

Our decision tree classifier achieves an average F1-
score of 0.79 (AUC of 0.89). Additionally, our results
show that decision tree classifier can effectively im-
prove the detection of CI skip commits with an average
relative F1-score of 2.4X compare to the baseline while
it achieves an improvement of 56% compare to state-
of-the-art technique.

4.2 RQ2: What features are the best indicators of CI
skipped commits?
Motivation: So far, we saw that compared to our baseline,
the decision tree classifier provides an improvement of
2.4X on average. Now, we want to better understand what
features inputed to the decision tree assist in achieving such
a high performance. For example, is it the CI-skip rules
devised by Abdalkareem et al. [1] or other features are the
best indicators of CI skip commits? Thus, we analyze the
built decision trees to answer this research question.
Approach: To identify the features that are the most impor-
tant indicators of whether a commit is a CI skip commit
or not, we perform Top Node Analysis [25], [54], [55].
Top Node Analysis is used to identify the most important
features that are good indicators of whether or not a commit
is CI Skip. In a decision tree classifier, the most important
feature is the root node in the tree, and less important
features will be placed in lower levels of the tree. Thus,
the higher the level of the feature the more important it
is. To determine the important features in detecting CI skip
commits, we extract the features used in the top level of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 8

the created trees. Since we use 10-fold cross validation, the
analysis produces 10 trees for each project. Thus, the same
feature can occur multiple time in the top level in the ten
created decision trees (i.e., 1x10-fold cross validation). That
is, the number of occurrences of a feature in the top level
also indicates how important that feature is in identifying
CI skip commits and the higher the number of occurrence
the more important it is. For example, if a feature appears in
the top level of all 10 decision trees of a project, we say that
this feature has an occurrence number of ten and it is the
most important feature in detecting CI skip commits for this
project. For each project, we extract the top level features
and the number of their occurrence in the ten built decision
trees.

In addition, to give a more general view of the most
important indicators of CI skip commits in all studied
projects, we aggregate the results of the top node analysis of
each project and sum the number of occurrences of each
feature. The higher the total number of occurrences of a
feature in all the ten studied projects the more important
it is in detecting CI skip commits. It should be mentioned
that our process generated 100 decision tree (10x10) for all
the projects, hence the sum up of features occurrences are
out of 100.
Results: Table 6 shows the result of the top node analysis for
each project. From Table 6, we note that there is no single
feature that appeared to be important in all the studied
projects. However, there are some features that are the
strongest indicators of whether a commit is a CI skip commit
or not for some projects. For example, the number of devel-
opers that changed the modified files is the most important
feature for the jMotif-GI project. A closer examination of
the jMotif-GI project, we found that the developers of
this project CI skip commits when they change a specific file
(readme file) in the project and there is only one developer
who is responsible for performing all the changes for this
file. The commit message is also the most important feature
for four projects; Parallec, TracEE Context-Log, SAX,
and CandyBar with top node analysis values equal to
10, 2, 1, and 1. For these projects a closer examination
reveals that the content of the commit messages have a
clear indication of the type of changes. For example, in a
commit change in the SAX project, a developer changes the
Java documentation in the source code and write “updating
javadocs” as a commit message. Another feature that seems
to be important as well is the CI-skip rule feature, which
appears in the top node analysis of three projects namely
TracEE Context-Log, GrammarViz, and SAX with top
node analysis values equal to 8, 10, and 2 respectively. For
example, a commit in the project GrammarViz added an
image file to the project and the developer decided to CI
skip the commit. On the other hand there are some features
that appears in one project. For example, the feature number
of lines deleted that appears in the Mechanical Tsar
project. Again we examine some of the CI skip commit in
this project. We found that the project’s developers some-
times optimize the declaration of the used APIs and delete
source code lines.

Table 7 shows the result of the top node analysis for
all the ten projects in our testing dataset. First, as the
table shows in all the projects the number of developers

TABLE 7
Top Node Analysis for All the Projects.

Feature Number of
Projects

Total Number of
Occurrence§

NDEV 3 21
CI-Skip Rules 3 20
CM 4 14
NUC 3 11
SEXP 2 11
TFC 2 10
EXP 1 9
LD 1 4

Total - 100
§The number of occurrence is out of 100.

who changed the modified files (NDEV), the devised rules
(CI − Skip Rules), and the commit message (CM) are the
most important features in identifying CI skip commits.
They have occurrence values equal to 21, 20, and 14 for
the number of developers who changed the modified files,
devised CI-skip rules, and commit messages, respectively.

While it makes sense that the CI-skip rules are important
in detecting CI skip commits as these rules are defined based
on analyzing CI skip commits flagged by developers [1], it is
more important to understand why the other two features
(number of developers who change the modified file and
the commit messages) are important as well.

To investigate why the number of developers who
changed the modified files as feature is more important
and effective than the other features in detecting CI skip
commits, we also manually examine the built decision trees.
We observed that when there is only one developer who
changes the modified files, the classifier makes the decision
that this commit is a CI skip commit. This is due to the
practice that some files are special and modified usually by
one developer. For example, in the SAX project, there is only
one developer who is responsible for modifying the readme
file.

Similarly, we investigate why the commit message is
also important in detecting CI skip commits. We found that
developers mention the type of activities performed by the
change. For example, the following message “update docs”
indicates that the developer changed documentation files in
this commit.

Other features also important in indicating CI skip com-
mits. The number of unique changes to the modified files
(NUC) is a important indicator which appears in the top
node analysis of three projects. The developer experience on
a subsystem (SEXP) and the type of files change (TFC)
appear in the top node analysis in two projects. Finally,
developer experience (EXP) and number of lines of deleted
code (LD) appear only on the top level of the top node
analysis in one project each.�

�

�

�

The results of the top node analysis indicate that
number of developers who changed the modified files,
the CI-skip rules, and commit message are the most
important features in identifying CI skip commit using
decision tree classifier.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 9

TABLE 8
Performance of Cross-Projects Classification.

Project Precision Recall F1-Score
(Relative F1) AUC

TracEE Context-Log 0.43 0.57 0.48 (1.3X) 0.70
SAX 0.77 0.80 0.79 (2.1X) 0.92
Trane.io Future 0.19 0.41 0.25 (0.7X) 0.51
Solr-iso639-filter 0.49 0.89 0.63 (1.8X) 0.69
jMotif-GI 0.58 0.78 0.66 (1.7X) 0.90
GrammarViz 0.63 0.86 0.72 (1.9X) 0.93
Parallec 0.85 0.93 0.88 (2.5X) 0.92
CandyBar 0.78 0.52 0.62 (1.8X) 0.62
SteVe 0.41 0.20 0.26 (0.7X) 0.61
Mechanical Tsar 0.38 0.18 0.24 (0.7X) 0.56

Average 0.55 0.61 0.55 (1.5X) 0.74
Median 0.54 0.68 0.63 (1.8X) 0.70

4.3 RQ3: How effective is the machine learning classi-
fier when applied on cross-projects?

Motivation: Building an ML classifier to identify CI skip
commits requires having labeled data to train on. However,
many projects do not have sufficient historical labeled data
to build a classifier (e.g., unlabeled, small or new project).
Thus, we cannot train a machine learning classifier to detect
CI skip commits on data from these projects. In this research
question, we investigate to what extent and with which
accuracy a commit can be automatically classified to be
a CI skip commit using a cross-project machine learning
classification.
Approach: To better understand the generalizability of the
results achieved by the training classifier on data from
one project and apply it on another project, we conduct
a cross-project validation. In particular, we experiment 10
fold cross-projects validation. We conducted an experiment
that trains a classifier on data from nine projects and uses
the resulting classifier to determine whether a commit is CI
skipped or not in the remaining one project, similar to prior
work [3], [18]. We repeat this process ten times, once for
each project in the testing dataset. To build the classifier, we
train the decision tree machine learning classifier following
the same approach described early in Section 4. Once again,
we employ the well-known evaluation metrics where we
compute the precision, recall, F1-score, and Area Under the
ROC Curve (AUC) values to measure the performance of the
classifier. Finally, to examine the performance of the cross-
project classifier with respect to the random baseline, we
compute the relative F1-score.
Result: Table 8 presents the results of our experiment.
It presents precision, recall, F1-score (relative F1-score
shown in parentheses), and the AUC values for each
project. Table 8 shows that the the general classifier
achieve a performance of AUC value of 0.74 and 0.70
for the average and median, respectively. Five projects
out of ten show good performance results. The projects,
TracEE Context-Log, SAX, jMotif-GI, Parallec, and
GrammarViz achieve high AUC values ranging between
0.70 - 0.92. Other projects show a moderate performance
including Solr-iso639-filter, SteVe, and CandyBar
with value of 0.69, 0.61 and 0.62 for the AUC.

However, there are two projects that have low F1-

score and AUC values. In particular, project (Trane.io
Future) has a poor performance with AUC value equal
to 0.51. To investigate why this project achieves such a poor
performance, we first look at the top node analysis from
research question two, we found that at the top level of
the top node analysis, developer experience (EXP) and the
number of unique changes to the modified files (NUC) are
the two important indicators to classify CI skip commits
in this project. However, these two features are not found
in the other projects except the number of modified files
(NUC) appears in two projects, Solr-iso639-filer and
SAX with occurrence values equal to 9 and 1, respectively.
The project Mechanical Tsar also has a low F1-score
and AUC values. For this project, top node analysis shows
that two features are important, which are the number of
developers who changed the modified files (NDEV) and
number of lines of deleted code (LD). This shows that
when building the decision tree on data from the other nine
projects, the decision tree does not have sufficient evidence
(information gain value) that these features are important
for the examined project under test.

Finally, when we compare the performance of the cross-
projects classifier to the baseline, our results show that cross-
projects classifier shows an improvement of 50% on average
over the baseline.�

�

�

�

The results show that cross-projects machine learn-
ing classifier can provide comparable performances to
within-project classifier of CI skip classification. For
eight projects out of the ten studied projects, cross-
projects classifier achieves AUC values range between
0.61 - 0.92 with an overall average equal to 0.74.

5 DISCUSSION

In this section, we first examine the use other machine
learning classifiers to detect CI skip commits. Second, we
examine the amount of effort that can be saved by using our
prediction of CI skip commits.

5.1 What Classifiers Provides the Best Accuracy for
Identifying CI Skip Commits?
So far, we used decision tree classifier to determine CI
skip commits, and it showed an effective improvement
over the baseline. However, the decision tree is not the
only supervised machine learning classifier. Thus, in this
subsection, we investigate the use of other machine learning
classifiers and compare their performance in identifying CI
skip commits. We use our dataset prepared in Section 3.1
and the same approach described in Section 3.2 to train other
six machine learning classifiers namely Logistic Regression,
Naive Bayes, Random Forest, Random Tree, Decision Table,
and Support Vector Machines. We choose to examine these
ML classifiers, since they have different assumptions on the
analyzed data, as well as having different characteristics in
terms of execution speed and dealing with overfitting [9].
Also, they have been commonly used in the past in other
software engineering studies (e.,g. [3], [4], [21], [27], [31],
[32], [47], [58], [63]).

To provide a comprehensive comparison of the different
classifiers, we compare them in two scenarios. First, we

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 10

TABLE 9
Performance of Using Different Classifiers to Detect CI Skip Commits.

Project Decision Tree Logistic Regres. Naive Bayes Random Forest Random Tree Decision Table SVM

F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC

TracEE Context-Log 0.94 (2.6X) 0.96 0.94 (2.5X) 0.98 0.96 (2.6X) 1.00 0.97 (2.6X) 1.00 0.94 (2.5X) 0.97 0.94 (2.6X) 0.96 0.95 (2.6X) 0.97
SAX 0.83 (2.6X) 0.93 0.78 (2.5X) 0.90 0.78 (2.5X) 0.95 0.90 (2.8X) 0.98 0.77 (2.4X) 0.92 0.86 (2.7X) 0.94 0.86 (2.7X) 0.92
Trane.io Future 0.87 (3.2X) 0.94 0.74 (2.8X) 0.94 0.83 (3.1X) 0.94 0.99 (3.7X) 1.00 0.64 (2.4X) 0.88 0.82 (3.0X) 0.93 0.91 (3.4X) 0.98
Solr-iso639-filter 0.90 (2.0X) 0.95 0.83 (1.8X) 0.85 0.76 (1.7X) 0.89 0.93 (2.1X) 0.99 0.65 (1.4X) 0.74 0.87 (1.9X) 0.93 0.87 (1.9X) 0.89
jMotif-GI 0.78 (3.9X) 0.91 0.57 (2.8X) 0.89 0.52 (2.6X) 0.95 0.86 (4.3X) 0.97 0.81 (4.0X) 0.90 0.71 (3.6X) 0.92 0.67 (3.3X) 0.86
GrammarViz 0.66 (3.1X) 0.91 0.68 (3.2X) 0.93 0.55 (2.6X) 0.93 0.78 (3.7X) 0.96 0.59 (2.8X) 0.88 0.63 (3.0X) 0.92 0.77 (3.7X) 0.91
Parallec 0.89 (1.7X) 0.88 0.81 (1.5X) 0.80 0.89 (1.7X) 0.91 0.95 (1.8X) 0.97 0.85 (1.6X) 0.78 0.91 (1.7X) 0.92 0.97 (1.8X) 0.96
CandyBar 0.83 (1.4X) 0.82 0.79 (1.4X) 0.76 0.88 (1.5X) 0.86 0.87 (1.5X) 0.86 0.75 (1.3X) 0.77 0.83 (1.4X) 0.81 0.83 (1.4X) 0.78
SteVe 0.59 (2.1X) 0.83 0.43 (1.6X) 0.72 0.48 (1.7X) 0.75 0.52 (1.9X) 0.85 0.32(1.1X) 0.64 0.61 (2.2X) 0.85 0.47 (1.7X) 0.69
Mechanical Tsar 0.62 (1.5X) 0.74 0.48 (1.2X) 0.58 0.59 (1.4X) 0.73 0.67 (1.6X) 0.82 0.58 (1.4X) 0.71 0.59 (1.4X) 0.70 0.57 (1.4X) 0.67

Average 0.79 (2.4X) 0.89 0.71 (2.1X) 0.84 0.72 (2.1X) 0.89 0.84 (2.6X) 0.94 0.69 (2.1X) 0.82 0.78 (2.4X) 0.89 0.79 (2.4X) 0.86
Median 0.83 (2.3X) 0.91 0.76 (2.2X) 0.87 0.77 (2.1X) 0.92 0.89 (2.4X) 0.97 0.70 (2.0X) 0.83 0.83 (2.4X) 0.92 0.85 (2.3X) 0.90

TABLE 10
Performance of Using Different Classifiers to Detect CI Skip Commits Cross-Project Validation.

Project Decision Tree Logistic Regres. Naive Bayes Random Forest Random Tree Decision Table SVM

F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC F1 (R.-F1) AUC

TracEE Context-Log 0.48 (1.3X) 0.70 0.20 (0.5X) 0.78 0.83 (2.3X) 0.92 0.79 (2.1X) 0.97 0.61 (1.7X) 0.75 0.63 (1.7X) 0.79 0.55 (1.5X) 0.69
SAX 0.79 (2.1X) 0.92 0.68 (1.8X) 0.81 0.46 (1.2X) 0.93 0.87 (2.3X) 0.97 0.76 (2.0X) 0.93 0.53 (1.4X) 0.81 0.81 (2.1X) 0.91
Trane.io Future 0.25 (0.7X) 0.51 0.31 (0.8X) 0.55 0.14 (0.5X) 0.36 0.25 (0.7X) 0.52 0.20 (0.5X) 0.49 0.19 (0.5X) 0.46 0.22 (0.6X) 0.52
Solr-iso639-filter 0.63 (1.8X) 0.69 0.41 (1.2X) 0.57 0.56 (1.6X) 0.66 0.50 (1.4X) 0.77 0.33 (1.0X) 0.56 0.44 (1.3X) 0.56 0.67 (1.9X) 0.74
jMotif-GI 0.66 (1.7X) 0.90 0.45 (1.2X) 0.74 0.35 (0.9X) 0.91 0.78 (2.0X) 0.93 0.64 (1.6X) 0.88 0.68 (1.7X) 0.88 0.66 (1.7X) 0.85
GrammarViz 0.72 (1.9X) 0.93 0.51 (1.3X) 0.79 0.31 (0.8X) 0.91 0.84 (2.1X) 0.97 0.67 (1.7X) 0.93 0.66 (1.7X) 0.90 0.75 (1.9X) 0.91
Parallec 0.88 (2.5X) 0.92 0.86 (2.4X) 0.85 0.84 (2.3X) 0.95 0.90 (2.5X) 0.93 0.81 (2.3X) 0.83 0.80 (2.2X) 0.82 0.90 (2.5X) 0.86
CandyBar 0.62 (1.8X) 0.62 0.50 (1.5X) 0.64 0.79 (2.3X) 0.77 0.45 (1.3X) 0.76 0.52 (1.5X) 0.57 0.58 (1.7X) 0.69 0.63 (1.9X) 0.63
SteVe 0.26 (0.7X) 0.61 0.29 (0.8X) 0.48 0.33 (0.9X) 0.55 0.26 (0.7X) 0.59 0.32 (0.8X) 0.59 0.04 (0.1X) 0.58 0.32 (0.9X) 0.58
Mechanical Tsar 0.24 (0.7X) 0.56 0.39 (1.1X) 0.51 0.54 (1.5X) 0.56 0.26 (0.7X) 0.65 0.41 (1.1X) 0.58 0.27 (0.7X) 0.56 0.33 (0.9X) 0.51

Average 0.55 (1.5X) 0.74 0.46 (1.3X) 0.67 0.52 (1.4X) 0.75 0.59 (1.6X) 0.81 0.53 (1.4X) 0.71 0.48 (1.3X) 0.71 0.58 (1.6X) 0.72
Median 0.63 (1.8X) 0.70 0.43 (1.2X) 0.69 0.50 (1.3X) 0.84 0.64 (1.7X) 0.85 0.57 (1.6X) 0.67 0.56 (1.5X) 0.74 0.65 (1.8X) 0.72

perform a within-project evaluation, where the classifiers
are trained and tested using non-overlapping data from the
same project. Second, we perform a cross-project evaluation,
where the classifier is trained on data from several projects
and tested on a completely different project. Finally, to
examine the performance of within-project and cross-project
classification of the different ML classifiers with respect to
the random baseline, we compute the F1-score (relative F1-
score) and AUC score as well.
Within-Project Classification. Table 9 shows the F1-score
(relative F1-score shown in parentheses) and AUC values
for the examined six classifiers and the decision tree as well.
As Table 9 shows, on average, random forest produces the
highest F1-score values with an average of 0.84 (median =
0.94), while the random tree classifier achieves the lowest
performance with an average F1-score of 0.69 (median of
0.70), across all of the studied projects. The other classifiers
achieve better performance than the random tree with F1-
score values ranging between 0.71 - 0.79. This corresponds to
a significant improvement ranging between 2.10X - 2.60X ,
on average, in F1-score over the baseline.

With average AUC scores ranging between 0.84 - 0.94, all
the machine learning classifiers perform significantly high.
The highest AUC values achieved is produced again by
the random forest classifier. For example, seven projects in
the testing dataset have AUC values greater than 0.95. The
results suggest that the random forest classifier is the best
machine learning classifier to detect CI skip commits.
Cross-Project Classification. Table 10 shows the results in
terms of F1-score and AUC that are achieved by the seven
classifiers for the cross-project validations. Once again, the

random forest classifier achieves the best results, followed
by support vector machines, and decision tree classifiers,
with 0.59, 0.58, and 0.55 average F1-score values and 0.81,
0.72, and 0.74 average AUC values, respectively. The other
classifiers also show moderate performance by achieving
average AUC values range between 0.67 - 0.71.

Interesting are the cases of the SAX, jMotif-GI,
GrammarViz, CandyBar, Solr-iso639-filter,
TracEE Context-Log, and Parallec projects where
the random forest classifier is able to achieve a high
performance value ranging between 0.76 - 0.97 for the AUC
values. Also, there are three projects that produce poor
results which are Trane.io Future, Mechanical Tsar,
and SteVe.

5.2 How Much Effort Can be Saved by Using ML Tech-
nique to CI Skip Commits?
Thus far, we have shown that our classification technique
can accurately flag commits that should be CI skipped,
however, one lingering question is – how much effort can we
actually save using our classifiers? Of course, automatically
detecting commits that can be CI skipped can reduce the
amount of resources needed for the CI process, consequently
speeding up the overall development cycle, making code
reach the customers faster. In this subsection, we investigate
the amount of effort that can be saved by applying our clas-
sifier to nineteen projects from the TravisTorrent dataset [6].

We evaluate the effort-saving by applying the trained
classifier on projects from the TravisTorrent dataset [6]. We
select the twenty projects with the highest number of build
commits from the TravisTorrent dataset. We choose these

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 11

TABLE 11
Performance of Using Random Forest Classifier on Unseen DataSet.

Project LOC Classes Methods Time Period # of Commits§ Predicted Percentage

Gradle Build Tool 217,009 7,401 30,375 2012-10-25 - 2017-12-13 38,613 3,018 7.82
Apache Jackrabbit Oak 432,413 6,864 39,406 2012-06-18 - 2017-12-08 13,399 348 2.60
LanguageTool 85,734 1,380 6,626 2014-05-14 - 2017-12-14 12,823 1,418 11.06
grayLog 105,380 2,114 10,734 2012-04-16 - 2017-12-13 10,858 589 5.42
sonarQube 525,849 8,315 56,320 2015-03-17 - 2017-12-14 10,857 170 1.57
Singularity Mesos 58,902 815 6,454 2014-08-22 - 2017-12-14 7,610 358 4.70
Cloudify 78,162 1,103 6,920 2012-06-01 - 2014-11-27 6,864 100 1.46
Structr 154,405 2,118 13,428 2012-12-20 - 2017-12-14 6,618 270 4.08
Orbeon Forms 66,976 1,266 7,194 2012-03-13 - 2017-12-13 6,465 249 3.85
ownCloud App 40,030 509 2,909 2014-01-21 - 2017-12-14 4,765 303 6.36
BuildCraft 155,649 2,555 15,254 2014-05-04 - 2017-12-12 4,308 90 2.09
Grails Web Application 52,691 755 5,944 2014-05-12 - 2017-12-12 4,305 452 10.50
FenixEdu Academic 303,621 4,808 37,598 2013-05-23 - 2017-11-20 4,067 253 6.22
Unidata’s THREDDS 474,494 5,686 43,281 2013-10-01 - 2017-12-14 4,008 142 3.54
DSpace Platform 172,969 2,102 12,813 2013-07-25 - 2017-12-14 3,956 141 3.56
Traccar 48,559 1,058 2,869 2015-03-03 - 2017-12-15 3,852 82 2.13
Brightspot 45,117 815 3,645 2015-06-12 - 2017-12-08 3,547 82 2.31
Apache Fineract 193,841 2,774 15,008 2013-02-15 - 2016-02-01 3,116 261 8.38
Linux.org.ru 23,201 354 2,067 2012-10-09 - 2017-12-14 2,763 192 6.95

Average 170,263 2,779 16,781 - 8,041.79 448.32 4.98
Median 105,380 2,102 10,734 - 4,765 253 4.08
§# of commits after the introduction of Travis CI to the project.

projects because we want to examine the effort-saving on
real projects. For every project, we first clone the project
and then we extract the features described in Section 3.2.
We were not able to extract features from one project that
has many branches that we could not extract the commit-
level features for. Thus, we ended up with nineteen projects
to analyze. Table 11 lists the statistics of the studied Java
projects that include number of LOCs, classes, methods and
time period. It also shows the list of the analyzed projects
and number of commits in each project that are computed
after the introduction of Travis CI. We then applied the
cross-project classification. We start by building a random
forest classifier by training the classifier on all the labeled
data from the ten projects in our testing datasets from
Section 3.1. We choose to use random forest classifier since
it is the most accurate classifier when it uses in cross-
project classification. We applied the trained random forest
classifier on all the commits in the nineteen projects and
flag commits that should be CI skipped. Finally, we report
the percentage of commits that are flagged to be CI skipped.

The last two columns of Table 11 show the number
and percentage of the commits that are flagged to be CI
skipped in all the selected nineteen projects. It shows that
the percentage of detected CI skip commits range between
1.46 - 11.06, and with an average of 4.98% of the commits in
the studied projects can be CI skipped. As the table shows,
for eight projects, the percentage of CI skipped commits is
more than 5% ranging between 5.42% - 11.06%. This finding
shows the importance of skipping commits that unnecessary
kick off the CI process, which in return helps developers
speed up the development and release process.

To make sure that the ML technique detects the correct
commits to be CI skip commits, we manually examined
all the identified CI skip commits using the ML technique.
The ML technique (random forest classifier) detects 8,518
commits as CI skip commits. To examine these commits, the
first author manually examined all the identified CI skip

commits to make sure that ML classifier detects commits
that are unnecessary to kick off CI process CI for. Since this
process is subject to human bias and to examine the validity
of our manual examination, we had the second author (PhD
student) independently examine a statistically significant
sample of the detect CI skip commits by our ML classifier
to reach a 95% confidence level using a 5% confidence inter-
val. The second author manually examined the statistically
significant sample of 368 detected CI skip commits. We then
use the Cohen’s Kappa coefficient to evaluate the level of
agreement between the two authors [15]. In our analysis,
we found the level of agreement between the annotators
to be 0.89, which is considered to be excellent agreement
[16]. Finally, for the cases that the two authors did not agree
on, they hold a final round to clarify their classification and
come up with an agreement.

Out of the 8,518 identified CI skip commit by the ML
technique, we found that 7,267 (85.31%) are commits that
can be CI skip. Also, for 1,251 commits that the ML tech-
nique identified to be CI skip, the manual investigation
reveals that these may not be CI skip or false positive. From
our manual analysis, We found that false positive cases
are mainly related to four categories. The most frequent
false positive cases are related to code changes to other
programming languages (in 76.7% of the commits) that
include JavaScript code (38.7%), Groovy code (26.9%), Scala
(9.4%), Python (1.3%), and Ruby (1.2%). From our analysis
of the commits related to the category mentioned above,
we observed that these commits are related to projects that
contain other programming language code than Java. For
example, the project sonarQube has some code related to
front-end web development and contains JavaScript code.
Also, we found that 13% of the false positive cases are
related to changes in the configuration and infrastructure
code, such as Docker files. Interestingly, we found that
6.9% of the false positive commits change simple Java code,
where a developer renames one variable in a Java file. Lastly,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 12

we found a small number of the flagged CI skipped commits
(2.8%) are related changes that modify SQL statements in
SQL code files.

6 RELATED WORK

The goal of this paper is to use ML to classify commits that
can be CI skip using features extracted from commit-level
granularity. Thus, we divide the prior work into two parts;
work related to the continuous integration and work related
to commit-level prediction.

6.1 Continuous Integration:

Most recently, Abdalkareem et al. [1] proposed a rule-based
techniques to detect CI skip commits. Their technique is
based on a set of rules devised through a manual exami-
nation of approximately 1,800 explicit CI skip commits by
developers. Their evaluation reveal that the rule-based tech-
nique achieves an average Areas Under the Curve (AUC)
equal to 0.73. Despite the fact that we share the same goal
with the work of Abdalkareem et al. [1], which detecting
CI skip commits, our work is different in that we focus
exclusively on the use of ML techniques to detect CI skip.
In addition, we compare the performance of using ML
techniques to Abdalkareem et al. [1] and found that ML
achieve higher performance.

Previous studies also investigated the possibility of pre-
dicting whether a CI process will result in a pass or a fail
build. Ni and Li [43] proposed the use of cascade classifiers
to predict build failures. Their classifiers achieve an AUC
of 0.75, which is higher than other basic classifiers they
compare to, such as decision trees and Naive Bayes. Their
analysis also shows that historical committers and project
statistics are the best indicators of build statuses. Hassan et
al. [26] propose to predict whether the build outcome will
be successful of not using a combined features of build
related metadata and code change information of commits.
Their experiment is based on a dataset of more than 250,000
build instances over a period of 5 years recorded by Travis
CI and their results show that the proposed prediction
model can predict build outcome with an F1-score of more
than 0.89. Xie and Li [65] proposed an advanced semi-
supervised AUC optimization method that deals with the
imbalance and unlabeled build data. They then examined
the performance of the proposed method on build data
from eight projects and found that their method achieves an
average AUC of 0.74. Also, Ghaleb et al. [20] investigated the
characteristics of the builds that are associated with the long
build durations. To do so, they built logistic models to model
long build durations across projects and one of their main
findings suggests that caching content that rarely changes
can speed up builds. Our work differs from these studies in
that we focus exclusively on the detecting commits that can
be CI skipped. In many ways, our study complements prior
studies since we share the same goal of reducing CI time,
however, our focus is different given our exclusive focus on
CI skip commits.

Related to improving the CI tools, Brandtner et al. [7]
introduced a tool called SQA-Mashup that integrates data
from different CI tools to provide a comprehensive view of

the status of a project. Campos et al. [8] propose an approach
to generate unit tests as part of the CI process automatically.
Other researchers investigate to enhance communication
channel between developers who use CI in their projects.
They find that CI provides a mechanism to send notifica-
tions of build failures [13], [38]. Downs et al. [11] conducted
an empirical study by interviewing developers and found
that the use of CI substantially affects the team’s work-
flow. Based on their findings, a number of guidelines were
suggested to improve CI monitoring and communication
when using CI.

Other work has focused on detecting the status of builds
and investigated the reasons for build failures. Rausch et
al. [48] collected a number of build metrics (e.,g. file type and
the number of commits) for 14 open-source Java project that
uses Travis CI to better understand build failures. Among
other findings, their study showed that cosmetic changes
sometimes break builds, but this often indicates unwanted
flakiness of tests or the built environment. Seo et al. [52]
studied the characteristics of more than 26 million builds
done in C++ and Java at Google. They found that the most
common reason for builds failures is the dependencies be-
tween components. Ziftic and Reardon [69] propose a tech-
nique to detect fail regression tests of CI build automatically.
The technique uses heuristics that filter and rank changes
that might introduce the regression. Miller [42] reported the
use of continuous integration in an industrial setting and
showed that compilation errors, failing tests, static analysis
tool issues, and server issues are the most common reasons
for build failures. Other studies investigate the cost, benefits,
and usage of CI in open source and property projects [28],
[29], [36], the quality outcomes for open-source projects that
use CI services [62], [68], and configuration problem of CI
services [19].

As shown in the work mentioned above, CI can improve
the quality and productivities of software development.
However, getting results from CI can take considerable time
for some projects. Hence, our work addresses this issue
by using ML technique to detect commits that can be CI
skipped.

6.2 Commit-level Prediction:

A plethora of studies exists that uses machine learning
to understand various characteristics of software engineer-
ing. In particular, work that predicts the characteristic of
software based on commit-level. Hassan and Zhang [25]
used classifiers to predict whether a build would pass a
certification process. McIntosh et al. [39] build a classifier
that determines whether or not a software change will
be related to built changing. Xia et al. [64] propose cross-
project build co-change identification classifier to improve
the performance of build co-change identification in projects
in the initial development phases. Recently, Macho et al. [37]
improve the existing classifier performance by taking into
consideration the use of commit-level details.

Other work aims to predict defect changes. For example,
Kim et al. [33] classify each software change as buggy or
non-buggy by using commit-level metrics including added
and deleted source code and textual features in change
message. Kamei et al. [32] conducted a large-scale empirical

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 13

study of change-level quality assurance on eleven open
source and commercial projects. They aimed to provide an
effort-reducing way to focus on predicted defective change.
Along the same lines, Yang et al. [67] use simple unsuper-
vised classifies approaches for defective change prediction.
They observed that simple unsupervised classifier can per-
form better than supervised classifiers on defective change
prediction. Recently, Yan et al. [66] examine the use of a
machine learning approach to predict whether a source code
change contains self-admitted technical debt in the software
system.

Along the same line with those mentioned above stud-
ied, our work focuses on the prediction of CI skip commits
using ML classifiers and commit-level features such as the
number of added lines and developer experience. However,
our work aims to identify whether or not a commit can be
CI skip.

7 THREATS TO VALIDITY

This section describes the threats to the validities of our
study.

7.1 Internal validity:

Concerns with factors that could have influenced our study
set up. We rely on the git command line to analyze the
history of a project. Developers could modify the history
of their git repositories using, reset for example. From our
analysis, we only found one project that had a modified
history. To identify the type of file changes in a commit, we
use a list of extensions of the most common file types (e.g.,
readme files, etc.) from [61]. In some cases, the list of file
types we use may not be comprehensive.

7.2 Construct validity:

Considers the relationship between theory and observation,
in case the measured variables do not measure the actual
factors. The different configurations of Travis CI could af-
fect our results. Our labeled dataset is based on projects
having CI skip commits that are explicitly marked as so by
developers. In some cases, developers may forget to label
commits that should be skipped with [skip ci] or [ci
skip]. To evaluate the machine learning techniques, we
selected ten open source Java projects where developers
explicitly mark at least 10% of the commits as CI skip
commits. Additionally, we compare the performance of the
ML technique to the defined baseline which is simply the
ratio of skipped commits over all the commits in our test
dataset. It simply serves as an indicator of what a random
guess would do. It is a lower bound, hence we use it to
show that at the least, the ML technique is better than this
lower bound. In addition, to classify commits that are CI
skip commits, we use seven ML classifiers with their default
configuration parameters provided by the Weka framework.
Changing these parameters may yield different results.

7.3 External validity:

Threats to external validity concern the generalization of
our findings. Our study is based solely on Java projects;

hence our results may not hold for projects written in other
programming languages. However, commit-level features
and the ML technique can be easily generalized to other
programming languages by analyzing the skip commits of
the other projects written in different programming lan-
guages. Second, the datasets used in our study present only
open source project hosted on GitHub that do not reflect
proprietary projects. Furthermore, we examine projects that
use Travis CI for their continuous integration services, and
different CI platforms could have more advanced features
for controlling skip commits. That said, Travis CI is one of
the most popular CI services on GitHub that have a basic
feature of skipping unrequited build commits.

8 CONCLUSION

In this paper, we study CI skip commits that developers
tend not to build a project on. Specifically, our goal is to use
ML techniques to detect commits that can be CI skip. To do
so, we propose the use of 23 commit-level features extracted
from ten Java projects that use Travis CI. Then, we build
a decision tree classifier. We found that the decision tree
can effectively improve the detection of CI skip commits
with an average F1-measure of 0.79 (median = 0.83). It also
achieves an average AUC of 0.89 (median = 0.91), which
represent an improvement of 56% on average over the state-
of-the-art (the rule-based technique [1]). Regarding the most
important features used by the decision tree classifiers to
indicate CI skip commits, we found that the number of
developers who modified the changed files and CI-Skip
rules to be the most important indicators of CI skip commits.
Additionally, we investigate the generalizability of detecting
CI skip commits when we use cross-projects validation. Our
results show that the cross-projects validation achieves on
average 0.55 and 0.74 for F1-measure and AUC, respectively.

REFERENCES

[1] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling. Which com-
mits can be ci skipped? IEEE Transactions on Software Engineering,
pages 1–1, 2019.

[2] K. Ansfield. [ci skip] for the build matrix - issue #4713 - travis-
ci/travis-ci. https://github.com/travis-ci/travis-ci/issues/4713.
(accessed on 02/10/2019).

[3] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza. Content
classification of development emails. In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, pages
375–385. IEEE Press, 2012.

[4] L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li. Who will leave the
company?: A large-scale industry study of developer turnover by
mining monthly work report. In Proceedings of the 14th International
Conference on Mining Software Repositories, MSR ’17, pages 170–181,
May 2017.

[5] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke
the build: An explorative analysis of travis ci with github. In
Proceedings of the 14th International Conference on Mining Software
Repositories, MSR ’17, pages 356–367. IEEE Press, 2017.

[6] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integra-
tion. In Proceedings of the 14th International Conference on Mining
Software Repositories, MSR ’17, pages 447–450. IEEE Press, 2017.

[7] M. Brandtner, E. Giger, and H. Gall. Supporting continuous
integration by mashing-up software quality information. In Pro-
ceedings of the Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering, (CSMR-WCRE)
’14, pages 184–193. IEEE, 2014.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 14

[8] J. Campos, A. Arcuri, G. Fraser, and R. Abreu. Continuous test
generation: Enhancing continuous integration with automated test
generation. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 55–
66. ACM, 2014.

[9] R. Caruana and A. Niculescu-Mizil. An empirical comparison
of supervised learning algorithms. In Proceedings of the 23rd
International Conference on Machine Learning, ICML ’06, pages 161–
168. ACM, 2006.

[10] M. A. Cusumano and R. W. Selby. Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets,
and Manages People. The Free Press, 1995.

[11] J. Downs, J. Hosking, and B. Plimmer. Status communication in
agile software teams: A case study. In Proceedings of 2010 Fifth
International Conference on Software Engineering Advances, ICSEA
’10, pages 82–87. IEEE, 2010.

[12] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley
Signature Series). Addison-Wesley Professional, 2007.

[13] S. Dsinger, R. Mordinyi, and S. Biffl. Communicating continuous
integration servers for increasing effectiveness of automated test-
ing. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 374–377. IEEE, Sept ASE
’12.

[14] B. Efron. Estimating the error rate of a prediction rule: im-
provement on cross-validation. Journal of the American statistical
association, 78(382):316–331, 1983.

[15] J. Fleiss. The measurement of interrater agreement. Statistical
methods for rates and proportions, pages 212–236, 1981.

[16] J. L. Fleiss and J. Cohen. The equivalence of weighted kappa
and the intraclass correlation coefficient as measures of reliability.
Educational and psychological measurement, 33(3):613–619, 1973.

[17] W. Fu and T. Menzies. Revisiting unsupervised learning for
defect prediction. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, pages 72–83.
ACM, 2017.

[18] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and
N. Ubayashi. An empirical study of just-in-time defect prediction
using cross-project models. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 172–
181. ACM, 2014.

[19] K. Gallaba and S. McIntosh. Use and misuse of continuous
integration features: An empirical study of projects that (mis)use
travis ci. IEEE Transactions on Software Engineering, pages 1–1, 2018.

[20] T. A. Ghaleb, D. A. da Costa, and Y. Zou. An empirical study of the
long duration of continuous integration builds. Empirical Software
Engineering, 24(4):2102–2139, Aug 2019.

[21] B. Ghotra, S. , and A. E. Hassan. Revisiting the impact of
classification techniques on the performance of defect prediction
models. In Proceedings of the 37th International Conference on
Software Engineering, ICSE ’15, pages 789–800. IEEE Press, 2015.

[22] GitHub. Github activity data — marketplace - google
cloud platform. https://console.cloud.google.com/
marketplace/details/github/github-repos?filter=solution-type:
dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb, 2019.
(accessed on 7/03/2019).

[23] J. Graham. Conditionally ignore some of the builds in a matrix
- issue #6685 - travis-ci/travis-ci. https://github.com/travis-ci/
travis-ci/issues/6685. (accessed on 02/10/2019).

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18, 2009.

[25] A. E. Hassan and K. Zhang. Using decision trees to predict the
certification result of a build. In Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, ASE ’06,
pages 189–198. IEEE Computer Society, 2006.

[26] F. Hassan and X. Wang. Change-aware build prediction model
for stall avoidance in continuous integration. In Proceedings of
the 11th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’17, pages 157–162. IEEE Press,
2017.

[27] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An investigation on
the feasibility of cross-project defect prediction. Automated Software
Engineering., 19(2):167–199, June 2012.

[28] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: Assurance, security, and flexibility.

In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE ’17, pages 197–207. ACM, 2017.

[29] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Us-
age, costs, and benefits of continuous integration in open-source
projects. In Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’16, pages 426–437.
ACM, 2016.

[30] Q. Huang, X. Xia, and D. Lo. Revisiting supervised and unsu-
pervised models for effort-aware just-in-time defect prediction.
Empirical Software Engineering, 24(5):2823–2862, Oct 2019.

[31] H. Iba. Random tree generation for genetic programming. In
Proceedings of the 4th International Conference on Parallel Problem
Solving from Nature, PPSN IV, pages 144–153, London, UK, UK,
1996. Springer-Verlag.

[32] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering,
39(6):757–773, June 2013.

[33] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineer-
ing, 34(2):181–196, Mar 2008.

[34] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. Machine
learning: A review of classification and combining techniques.
Artif. Intell. Rev., 26(3):159–190, Nov. 2006.

[35] P. Ladenburger. Exclude files from triggering a build - is-
sue #6301 - travis-ci/travis-ci. https://github.com/travis-ci/
travis-ci/issues/6301, Jul 2016. (accessed on 11/29/2017).

[36] M. Leppanen, S. Makinen, M. Pagels, V. P. Eloranta, J. Itkonen,
M. V. Mantyla, and T. Mannisto. The highways and country roads
to continuous deployment. IEEE Software, 32(2):64–72, Mar 2015.

[37] C. Macho, S. McIntosh, and M. Pinzger. Predicting build co-
changes with source code change and commit categories. In 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, volume 1 of SANER 2016, pages 541–551. IEEE,
2016.

[38] K. Matsumoto, S. Kibe, M. Uehara, and H. Mori. Design of
development as a service in the cloud. In Proceedings of 15th
International Conference on the Network-Based Information Systems,
NBiS ’12, pages 815–819. IEEE, 2012.

[39] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan. Mining
co-change information to understand when build changes are
necessary. In Proceedings of IEEE International Conference on Software
Maintenance and Evolution, ICSME 2014, pages 241–250. IEEE, 2014.

[40] S. McIntosh and Y. Kamei. Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect prediction.
IEEE Transactions on Software Engineering, 44(5):412–428, May 2018.

[41] J. Micco. Tools for continuous integration at google scale -
youtube, August 2012.

[42] A. Miller. A hundred days of continuous integration. In Agile 2008
Conference, pages 289–293. IEEE, Aug 2008.

[43] A. Ni and M. Li. Cost-effective build outcome prediction using
cascaded classifiers. In 2017 IEEE/ACM 14th International Confer-
ence on Mining Software Repositories, MSR ’17, pages 455–458. IEEE,
May 2017.

[44] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker,
and L. Williams. The top 10 adages in continuous deployment.
IEEE Software, 34(3):86–95, May 2017.

[45] G. project. geoserver/geoserver: Official geoserver reposi-
tory. https://github.com/geoserver/geoserver. (accessed on
10/07/2019).

[46] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers, San Mateo, CA, 1993.

[47] M. M. Rahman, C. K. Roy, and R. G. Kula. Predicting usefulness
of code review comments using textual features and developer
experience. In Proceedings of the 14th International Conference on
Mining Software Repositories, MSR ’17, pages 215–226. IEEE Press,
2017.

[48] T. Rausch, W. Hummer, P. Leitner, and S. Schulte. An empirical
analysis of build failures in the continuous integration workflows
of java-based open-source software. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR ’17,
pages 345–355. IEEE Press, 2017.

[49] C. Rosen, B. Grawi, and E. Shihab. Commit guru: Analytics and
risk prediction of software commits. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 966–969. ACM, 2015.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2019 15

[50] C. Rossi, E. Shibley, S. Su, K. Beck, T. Savor, and M. Stumm.
Continuous deployment of mobile software at facebook (show-
case). In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, pages
12–23. ACM, 2016.

[51] C. B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering, 25(4):557–
572, July 1999.

[52] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge.
Programmers’ build errors: A case study (at google). In Proceedings
of the 36th International Conference on Software Engineering, ICSE’ 14,
pages 724–734. ACM, 2014.

[53] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang. An industrial
study on the risk of software changes. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 62:1–62:11, New York, NY,
USA, 2012. ACM.

[54] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto. Studying re-opened bugs in
open source software. Empirical Software Engineering, 18(5):1005–
1042, Oct 2013.

[55] J. S. Shirabad, T. C. Lethbridge, and S. Matwin. Supporting
software maintenance by mining software update records. In
Proceedings IEEE International Conference on Software Maintenance.,
ICSM ’01, pages 22–31. IEEE, 2001.

[56] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? In Proceedings of the 2005 International Workshop on
Mining Software Repositories, MSR ’05, pages 1–5. ACM, 2005.

[57] Q. Song, Y. Guo, and M. Shepperd. A comprehensive investigation
of the role of imbalanced learning for software defect prediction.
IEEE Transactions on Software Engineering, pages 1–1, 2018.

[58] F. Thung, D. Lo, L. Jiang, Lucia, F. Rahman, and P. T. Devanbu.
When would this bug get reported? In Proceedings of the 28th IEEE
International Conference on Software Maintenance, ICSM ’12, pages
420–429. IEEE, Sept 2012.

[59] M. Unterwaditzer. Feature request: Skip build if given set of
files didn’t change issue #2086 travis-ci/travis-ci. https://
github.com/travis-ci/travis-ci/issues/2086, Mar 2014. (Accessed
on 07/18/2018).

[60] H. Valdivia Garcia and E. Shihab. Characterizing and predicting
blocking bugs in open source projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR ’14, pages
72–81. ACM, 2014.

[61] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On
the variation and specialisation of workload–a case study of
the gnome ecosystem community. Journal of Empirical Software
Engineering, 19(4):955–1008, 2014.

[62] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality
and productivity outcomes relating to continuous integration in
github. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, FSE ’15, pages 805–816. ACM, 2015.

[63] X. Xia, E. , Y. Kamei, D. Lo, and X. Wang. Predicting crashing re-
leases of mobile applications. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, ESEM ’16, pages 29:1–29:10. ACM, 2016.

[64] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan. Cross-
project build co-change prediction. In 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering,
SANER 2014, pages 311–320. IEEE, 2015.

[65] Z. Xie and M. Li. Cutting the software building efforts in con-
tinuous integration by semi-supervised online auc optimization.
In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI ’18, pages 2875–2881. International Joint
Conferences on Artificial Intelligence Organization, 7 2018.

[66] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang. Automating
change-level self-admitted technical debt determination. IEEE
Transactions on Software Engineering, pages 1–1, 2018.

[67] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung.
Effort-aware just-in-time defect prediction: Simple unsupervised

models could be better than supervised models. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE ’16, pages 157–168. ACM, 2016.

[68] Y. Yu, B. Vasilescu, H. Wang, V. Filkov, and P. Devanbu. Initial
and eventual software quality relating to continuous integration
in github. arXiv preprint arXiv:1606.00521, 2016.

[69] C. Ziftci and J. Reardon. Who broke the build?: Automatically
identifying changes that induce test failures in continuous inte-
gration at google scale. In Proceedings of the 39th International
Conference on Software Engineering: Software Engineering in Practice
Track, ICSE-SEIP ’17, pages 113–122. IEEE Press, 2017.

Rabe Abdalkareem is a postdoctoral fellow
in the Software Analysis and Intelligence Lab
(SAIL) at Queens University, Canada. He re-
ceived his Ph.D. in Computer Science and Soft-
ware Engineering from Concordia University,
Montreal, Canada. His research investigates
how the adoption of crowdsourced knowledge
affects software development and maintenance.
Abdalkareem received his masters in applied
Computer Science from Concordia University.
His work has been published at premier venues

such as FSE, ICSME and MobileSoft, as well as in major journals such
as TSE, IEEE Software, EMSE and IST. Contact him at rab abdu@
encs.concordia.ca;http://users.encs.concordia.ca/rababdu.

Suhaib Mujahid is a Ph.D. student in the De-
partment of Computer Science and Software En-
gineering at Concordia University. He received
his masters in Software Engineering from Con-
cordia University (Canada) in 2017, where his
work focused on detection and mitigation of
permission-related issues facing wearable app
developers. He did his Bachelors in Informa-
tion Systems at Palestine Polytechnic University.
His research interests include wearable applica-
tions, software quality assurance, mining soft-

ware repositories and empirical software engineering. You can find more
about him at http://users.encs.concordia.ca/smujahi.

Emad Shihab is an Associate Professor and
Concordia University Research Chair in the De-
partment of Computer Science and Software En-
gineering at Concordia University. His research
interests are in Software Engineering, Mining
Software Repositories, and Software Analytics.
His work has been published in some of the
most prestigious SE venues, including ICSE,
ESEC/FSE, MSR, ICSME, EMSE, and TSE. He
serves on the steering committees of PROMISE,
SANER and MSR, three of the leading confer-

ences in the software analytics areas. His work has been done in
collaboration with and adopted by some of the biggest software com-
panies, such as Microsoft, Avaya, BlackBerry, Ericsson and National
Bank. He is a senior member of the IEEE. His homepage is:http:
//das.encs.concordia.ca.

