
Empirical Software Engineering (2021) 26:15
https://doi.org/10.1007/s10664-020-09902-y

On the Removal of Feature Toggles

A Study of Python Projects and Practitioners Motivations

Juan Hoyos1 ·Rabe Abdalkareem2,3 · Suhaib Mujahid2 · Emad Shihab2 ·
Albeiro Espinosa Bedoya1

Accepted: 14 October 2020
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Feature Toggling is a technique to control the execution of features in a software project.
For example, practitioners using feature toggles can experiment with new features in a pro-
duction environment by exposing them to a subset of users. Some of these toggles require
additional maintainability efforts and are expected to be removed, whereas others are meant
to remain for a long time. However, to date, very little is known about the removal of feature
toggles, which is why we focus on this topic in our paper. We conduct an empirical study
that focuses on the removal of feature toggles. We use source code analysis techniques to
analyze 12 Python open source projects and surveyed 61 software practitioners to provide
deeper insights on the topic. Our study shows that 75% of the toggle components in the stud-
ied Python projects are removed within 49 weeks after introduction. However, eventually
practitioners remove feature toggles to follow the life cycle of a feature when it becomes
stable in production. We also find that not all long-term feature toggles are designed to live
that long and not all feature toggles are removed from the source code, opening the pos-
sibilities to unwanted risks. Our study broadens the understanding of feature toggles by
identifying reasons for their survival in practice and aims to help practitioners make better
decisions regarding the way they manage and remove feature toggles.

Keywords Feature toggles · Continuous integration · Continuous delivery ·
Empirical studies

1 Introduction

Continuous delivery is rapidly gaining traction in the development of software systems. Pre-
vious work has shown the many advantages of continuous delivery, including higher quality

Communicated by: Sarah Nadi

� Juan Hoyos
jdhoyosr@unal.edu.co

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09902-y&domain=pdf
http://orcid.org/0000-0003-4017-6126
mailto: jdhoyosr@unal.edu.co

 15 Page 2 of 26 Empir Software Eng (2021) 26:15

and user satisfaction (Adams and McIntosh 2016). Today, all major software companies
such as Netflix, Facebook, Microsoft, Mozilla, and Google have adapted their development
and business processes to incorporate continuous delivery (Zapata 2014; Feitelson et al.
2013; Harry 2012; Adams et al. 2015; Mäntylä et al. 2015; Claps et al. 2015).

One of the main supporting techniques of continuous delivery is feature toggles1 (Rah-
man et al. 2015). Feature toggles provide a mechanism to hide/show certain features from
being executed. The purpose of using this technique is to allow teams to control the
execution of features at will and modify the behavior of running software.

Although feature toggles provide a powerful tool to software teams, history has shown
that they can also lead to catastrophic outcomes. For example, in 2012 Knight Capital Group
lost approximately $460 million dollars because code behind a repurposed feature toggle
was incorrectly deployed (Securities and E. Commission 2013). Clearly, proper manage-
ment of these feature toggles is key. In fact, Neely and Stolt reported the need to remove
toggles in order to avoid a “mess of feature specific logic” (Neely and Stolt 2013). Other
efforts were more explicit, for example, when the Google Chrome developers started a cam-
paign to cleanup an unwanted number of toggles lingering in their source code (Rahman
et al. 2016).

We specifically focus on the study of toggles removal since the clean-up of feature tog-
gles can be complex, and if done incorrectly, can lead to major failures (Rahman et al. 2016;
Securities and E. Commission 2013). Also, while the control of the toggles inventory is an
activity suggested by prior work (Hodgson 2016; Rahman et al. 2016), yet very little is
known about the removal of toggles in reality (Neely and Stolt 2013; Rahman et al. 2016).
Our goal is to provide empirical evidence about what types of toggles are removed, when
and why. Doing so, provides unique insights to practitioners and researchers in the area and
enables us to better manage toggles.

Therefore, in this paper, we conduct an in-depth, mixed-method empirical study to better
understand the removal of feature toggles in open source software projects. Specifically, we
employ two empirical approaches. First, we perform a quantitative source code analysis to
determine the lifetime of toggle components through analyzing the source code of 12 Python
projects to better understand for how long they live in the software. Then, we perform a
qualitative survey to inquire 61 practitioners on their management and removal practices of
feature toggles.

Our study is formalized through the following main research questions:

– RQ1. How long do toggles remain in a project before they are removed? A previous
study on Google Chrome highlighted that a significant portion of feature toggles remain
in the source code across multiple releases (Rahman et al. 2016), although others have
advocated to keep them under a manageable number. We want to uncover whether this
characteristic extends to other projects that are using feature toggles.

– RQ2. Why and when practitioners remove toggles? We do not know if the removal trend
from our qualitative study remains for other projects and we want to understand the
conditions practitioners have to control the inventory of feature toggles in their projects.

Our findings indicate that 1) feature toggles allow practitioners to execute features
with precise control, mostly to leverage trunk-based development, dark launches and kill
switches; 2) 75% of the feature toggle components in the studied Python projects are
removed from the code within 49 weeks, although some of them are not intended to live for

1Toggles are also called flags, bits, flippers, switches or gates. In this paper, we use the term toggles.

Empir Software Eng (2021) 26:15 Page 3 of 26 15

such a long-term; and 3) most practitioners remove feature toggles guided by the life cycle
of the feature, when regular audits are exercised, or when refactoring code; a minority (5%),
keep kill switches for long periods or do not remove feature toggles. In particular, our paper
makes the following contributions:

– We perform a study that focused on the removal of feature toggles in Python open
source projects.

– Our study is one of the largest studies on feature toggles, involving the analysis of 72
projects and a survey of more than 60 practitioners.

– A publicly available dataset of open source projects that are using feature toggles and
an extensible tool to extract feature toggles across multiple Python projects.2

Paper Organization The remainder of this paper is organized as follows. In Section 2,
we provide background on the components of feature toggles. In Section 3, we discuss
the related work. Section 4 describes our study setup. Feature toggles usage patterns are
reported in the preliminary Section 5. In Section 6 and Section 7, we present and discuss
the results of our empirical study. Section 8 discusses the threats to validity of our study.
Finally, Section 9 concludes our paper.

2 Background

This section introduces the architectural elements of a toggling subsystem in a soft-
ware project and describes the usage patterns of feature toggles. Both toggling subsystem
elements and usage patterns, are fundamental to the rest of our study.

2.1 Toggling Subsystem

In this subsection, we briefly introduce the architectural elements that model the behaviour
of feature toggles in a software system as described in the literature. We later use these
elements for our extraction purposes in the study setup (Section 4.3).

Rahman et al. (2016) observed that feature toggles in Google Chrome are located in
multiple configuration files where they can be enabled or disabled. These feature toggles
are used directly inside “conditional statements” to decide on the execution of the evaluated
features. Alternatively, Rahman et al. (2016) noticed that toggles are also assigned to a
variable for later evaluation and allow “more flexible and complex usages”.

According to Hodgson (Hodgson 2016), toggled projects have a common set of elements:
toggle points, routers, configurations, and context. Figure 1 shows these four main parts and
how they are connected. When the regular code of a project is executed, the toggle points
are executed as well. These toggle points modify the behaviour of the project by means of
evaluating different logical conditions and deciding on the execution of certain paths of the
code. The evaluated logical conditions include the results of toggle routers that make “deci-
sions” based on a toggle configuration and an optional toggle context. Hodgson indicates the
toggle configuration affects the routing decision in a static way when the toggle router sim-
ply relays the state “On or Off” to the toggle point, or dynamically when the toggle router is
instructed by the configuration to decide a state depending on certain conditions, like if the
user belongs to the quality assurance team or the user matches the target country of an A/B

2A replication package is available on https://github.com/elhoyos/toggles package

https://github.com/elhoyos/toggles_package

 15 Page 4 of 26 Empir Software Eng (2021) 26:15

Fig. 1 A toggling subsystem. The toggle points modify the execution of a feature using a router, which in
turn, makes decisions using the toggle configuration and context. Adapted from Hodgson (Hodgson 2016)

test. In turn, the toggle context refers to this complementary data required for the toggle
router to make decisions, e.g. the user identity, usually not provided by the toggle configu-
ration but other project subsystems. Furthermore, Hodgson distinguishes between static and
dynamic configuration management. The configuration of toggles is static when managed
using the version control system (e.g. git) and re-deployments. Alternatively, the configu-
ration of toggles can be managed dynamically when the implemented technologies allow a
more rapid re-configuration (e.g. key/value stores, application databases, etc.) (Sayagh et al.
2018; Kästner 2019).

2.2 Usage Patterns

In this subsection, we introduce a set of usage patterns where feature toggles play a cen-
tral role to help practitioners gain better control of the development life cycle, the delivery
pipeline or the operation of their software. We obtained these patterns from relevant stud-
ies and from our related work in Section 3, after we found that their naming and goals
remain similar across these sources. The identification of usage patterns of feature toggles
is important to support the design of our survey as we will detail later in Section 4.4.

Trunk-Based Development Practitioners contribute their code into the main code branch
and hide their work from execution behind a feature toggle, while they keep the project
releasable at all times (Hodgson 2016; Rahman et al. 2015; Neely and Stolt 2013; Scher-
mann et al. 2016). According to Hodgson (2016), this practice is an enabler for continuous
delivery because the integration of the work is checked-in early in the development pro-
cess. Additionally, Rahman et al. (2015) mentions that trunk-based development reduces the
total merge effort (i.e. big-bang merges) when compared to a feature branches approach, in
which a feature is developed in an isolated branch and is merged into the main branch only
when it is completely ready. Also, Neely and Stolt (2013) report a reduction in the pain and
risks of merging long-running branches in their experience using this practice.

Empir Software Eng (2021) 26:15 Page 5 of 26 15

Dark Launches Practitioners release features into production environments without users
noticing and evaluate how features perform under real conditions with the help of fea-
ture toggles (Neely and Stolt 2013; Schermann et al. 2016). Adams and McIntosh (2016)
describe “dark launching” as releasing new features without exposing them publicly, and
indicate it is commonly employed to test the behaviour of the features under real loads.
For example, Facebook used a tool called Gatekeeper to install code in all their servers that
had the client applications to send “dummy chat messages” to a new chat server they were
load-testing without the users noticing (Feitelson et al. 2013).

Kill Switch Practitioners use feature toggles to quickly disable long-term features when
not working as expected (Hodgson 2016). Hodgson explains that it is not uncommon to
see long-lived feature toggles when practitioners realize these features could at some point
degrade the behaviour of the system, thus, they use this mechanism to quickly return the
system to a desirable state.

A/B or Multivariate Testing Practitioners use feature toggles to deliver multiple versions
of features to subsets of users with the intention to statistically validate each version against
technical or business expectations (Hodgson 2016; Schermann et al. 2016). Consequently,
A/B tests solutions can be built on top of toggling implementations using a context to select
the test variations and deliver the appropriate version to the right set of users. For example,
Facebook’s Andrew Bosworth explained in 2012 that they ran hundreds of tests every day
using Gatekeeper to control tests from colliding each other and to further obtain “statistically
meaningful results” (Bosworth 2012).

Canary Releases Practitioners can use feature toggles to release a version of a project to a
subset of users and validate the features in-the-field (Neely and Stolt 2013; Hodgson 2016;
Humble and Farley 2010). This type of feature toggle allows the practitioners to enable
features to the desired users in a controlled manner.

Blue-Green Deployments Practitioners can minimize the downtime of their projects while
moving all the users from the current version of a software project (green) to the new version
(blue) (Hodgson 2016; Humble and Farley 2010). This pattern occurs when coordinating
the release of a product-centric version of a software; for example, a revamped website
that should be built and later launched in coordination with a marketing campaign. When
compared to canary releases, Humble and Farley (2010) explain blue-green deployments
switch all the users to one of the versions of the project while canary releases granularly
expose features to a subset of them. In this sense, blue-green deployments can be leveraged,
for example, if feature toggles are implemented in a fully-managed middleware application
load balancing the traffic to both green and blue front-end versions.

3 RelatedWork

While feature toggles have been the center of attention in multiple studies, most of which
focus on the use and management of feature toggles. Rahman et al. (2016) examined the
feature toggles across 35 releases of Google Chrome. They observed that the use of feature
toggles increased linearly over time except for a temporary reduction, explained by an inter-
nal removal campaign. They also noticed that no less than 30% of the toggles are assigned to
variables for further check, contrary to toggles used directly inside a conditional statement.

 15 Page 6 of 26 Empir Software Eng (2021) 26:15

In addition, they found that only ∼3% of the changes in feature toggles occur during the
release stabilization phase as opposed to the development phase. More interestingly, they
concluded that 50% of toggles survived more than 12 releases and that 53% of short-lived
toggles remaining in the code for more than 10 releases suggested technical debt.

Later, Sayagh et al. (2018) associated the feature toggles in Google Chrome (Rahman
et al. 2016) with “configuration options”. They indicated feature toggles “should be actively
maintained” to avoid undesirable dead and unused options. In this sense, feature toggles
should be removed from the source code once their features become stable to reduce the risk
of turning into dead options, and that unused options should become a constant given their
“users” do not change their value often. In summary, the authors reported these suggestions
under the “pro-active dead option detection” expert recommendation, to maintain a healthy
configuration in a software system.

Other work reported the experiences of adopting feature toggles in software compa-
nies. For example, Neely and Stolt (2013) reported Rally Software used feature toggles
to approach the challenges faced towards continuous delivery. The company shrunk their
release cycles from eight-weeks to “at-will” in decreasing steps. They created a shared
understanding of work in progress (WIP) limits and managed it into their workflows with
the help of continuous delivery techniques. Feature toggles allowed the engineering team at
Rally Software to put in practice a no-branch policy, reducing the story sizes and increas-
ing the commit frequency. Specifically, they created a “framework of conditional logic” to
hide their WIP whenever needed, and built an interface to operate the state of the toggles
depending on the users running the application. Canary releases and Dark launches where
built-in benefits this technique provided to Rally Software. Neely and Stolt also documented
the experienced complexities when using feature toggles. They highlight that toggles rarely
overlap, reducing the need to test every single combination of the toggle. However, the
engineering team must be aware which tested toggle code path is turned on in production.
Finally, they found non-retired toggles transform the codebase into “a mess” and adapted
their workflows to write a story to remove a toggle once the feature behind it is decided to
be available for a general release.

Schermann et al. (2016) interviewed and surveyed a diverse set of practitioners regard-
ing the practices allowing continuous delivery. The survey results evidenced 36% of the
participants use feature toggles for partial rollouts. Similarly, the practice is common across
different company sizes: startups (50%), small-medium enterprises (35%) and corporations
(32%). Furthermore, the practice is not only employed in Web-based applications (45%).
Also, a significant portion of the surveyed participants using Canary Releases (57%) and
A/B Testing (50%) indicated an architectural barrier to adopt partial rollouts. Contrary to the
survey results, only 15% of the interviewed practitioners used toggles for partial rollouts and
expressed operating “basic” tooling to manage them. Finally, Schermann et al. suggested
the necessity for a proper architectural support to reduce the adoption barriers of partial
rollouts and to draw attention to aspect oriented architecture or product line engineering.

Hodgson (2016) categorized feature toggles and broke them up into components. The
author analyzed feature toggles depending on their toggling dynamism, longevity and inten-
tion. In this sense, he organized toggles in four categories: Release, Ops, Experiment and
Permission. Hodgson provided examples of associated costs when using feature toggles.
He stated that toggles introduce a “validation complexity” due to an exponential increase
of test cases for each new code path affected by a toggle, and suggested to test only the

Empir Software Eng (2021) 26:15 Page 7 of 26 15

code paths that are expected to be in production. And more importantly, he mentioned that
“savvy teams” manage feature toggles as inventory and “keep the number of feature flags
manageable” by proactively removing the ones the team does not need.

In other work, Rahman et al. (2018) studied the feature toggle architecture of Google
Chrome. The authors mapped the definition of toggles to the architectural modules span-
ning four major releases and observed the resulting relationships from two different views.
The feature’s perspective shows the modules a feature spans while the module’s perspec-
tive identifies the features a module contains. Their results revealed these two views differ
significantly and change over time. The feature toggles architecture was constructed to help
developers understand the feature-module relationship and locate feature complexities or
modularity violations.

Our work differs from the previous work, since we focus on the removal of feature tog-
gles in multiple open source projects, rather than its management and usage on a single
project. Also, our interest is the removal focuses on feature toggles, rather than configu-
ration engineering. To the best of our knowledge, the relationship between feature toggles
and configuration engineering is not clear and well understudied. In our empirical study, we
quantitatively examine the removal of feature toggles in 12 Python projects, and we survey
61 practitioners to understand why and when they remove feature toggles. In many ways,
our study complements and increases our prior understanding of the life cycle of feature
toggles.

4 Study Setup

The primary goal of this paper is to better understand the removal of feature toggles in
software projects. To achieve our goal, we first performed a quantitative study to exam-
ine the removal of feature toggles in the selected software projects. Then, we surveyed 61
practitioners to investigate why and when feature toggles are introduced and removed from
software projects.

4.1 Identifying Toggled Projects

To perform our quantitative analysis, we needed a representative sample of projects that
use feature toggles. To identify these projects, we followed a three-staged approach: 1) we
selected a set of libraries that provide building blocks to implement feature toggles, 2) we
searched for the dependent projects of the selected libraries in two data sources, and 3) we
filtered the projects that will serve useful for our quantitative study.

We manually selected 53 libraries with feature toggle capabilities to be used in soft-
ware projects. To do so, we collected all the related libraries that are available in public
web pages associated with the studied technique, namely, featureflags.io (LaunchDarkly
2015), djangopackages.org (Django Packages : Feature Flipping 2018), and enterprisede-
vops.org (Osherove 2016). These three websites contain resources dedicated to inform
software developers about features toggles, specifically.

We chose open source libraries that were non-deprecated and ready-for-production
according to their authors. Table 1 presents the programming languages, examples of the
libraries, and their distribution across all languages.

With the list of libraries, we identified open source projects that depend on them. To
achieve this, we searched for projects via GitHub’s REST API v3 (GitHub 2011a) and
Libraries.io (Libraries.io - The Open Source Discovery Service 2015). We queried GitHub

 15 Page 8 of 26 Empir Software Eng (2021) 26:15

Table 1 Libraries per Language

Languages Example of Libraries %Librs.

JavaScript, TypeScript flipit, launchdarkly, feature-toggles 18.9%

Ruby rollout, Flip, Setler, 17.0%

Python launchdarkly, flagon, Waffle 15.1%

C#, Visual Basic NFeature, FeatureSwitcher, nToggle 15.1%

Java, Kotlin launchdarkly, toggle, Togglz 13.2%

PHP launchdarkly, rollout, 9.4%

Go launchdarkly, Toggle, dcdr 7.5%

Scala Bandiera 1.9%

Objective-C, Swift launchdarkly 1.9%

between December 13th – 14th of 2019, using a two-phased approach. First, we searched
for various relevant terms to each library against the code search API endpoint (GitHub
2011b). To overcome the limitation of maximum 1,000 results and to control for partial
results when a search is slow for GitHub to process (GitHub 2011b), we bisected by file
size any affected search. Thus, we created two new searches that covered in tandem the file-
size bounds of the previous search. The upper bound of the bisect was limited by GitHub
to files smaller than 384 KB (GitHub 2013). In the second phase, we matched the resulting
code files with regular expressions built with dependency declarations, usages or imports of
each library. Subsequently, we queried the latest available dataset of Libraries.io in Google
BigQuery, which contained data that was last modified by March 20th, 2019. In this case,
we executed a SQL query to find dependent projects from the artifacts of the libraries. We
decided to selected these two data sources to augment the recall and because we found
there is a significant amount of non-overlapping results across them; we will present these
findings later in this section. At this point, we have a list of 2,273 projects listed in GitHub
that reference a toggling library in their source code.

As recommended by prior work (Kalliamvakou et al. 2014), we eliminated dummy
projects that may exist on GitHub. To do that, we augmented the remaining projects with
additional GitHub metadata like the parent repository, the id of the first commit, the creation
date, the number of commits, and the size in bytes. This augmentation helped us to choose
non-forked projects with more than 100 commits and a size of more than 1MB. As a final
step, we manually ran through the remaining results to spot and remove projects not of our
interest (e.g. sole dependency references, course templates, library clones). After this filter-
ing, 90 (approximately 22%) projects were found in both data sources, 240 (58%) of the
projects identified via GitHub’s code search were unique to that data source, and 82 (20%)
projects were unique to Libraries.io. In total, we obtained 412 projects that depend on one
of the toggling libraries.

Table 2 shows the name of the top five used toggling libraries, the programming lan-
guages, and the number and participation of projects. Overall, we found that from the 412
projects in our dataset, 39% are written in Python, 23% in Ruby and 18% in Java. Also, we
only found projects for 35 out of the initial list of 53 toggling libraries.

Then, we focused on the study of projects that use the Waffle library since 1) we manually
examined each project and wanted a dataset that is sufficiently large, but at the same time
manageable in size to analyze manually, 2) the extraction of toggles from projects is not a
trivial task as it requires the comprehension of a toggling library and the knowledge of its

Empir Software Eng (2021) 26:15 Page 9 of 26 15

Table 2 Toggled Projects per
Library Library Languages #Projects (%)

Waffle Python 132 (32%)

Togglz Java, Kotlin 38 (9.2%)

rollout Ruby 30 (7.2%)

Flipper Ruby 28 (6.8%)

unleash-client-java Java, Kotlin 22 (5.3%)

underlying programming language. The cumulative proficiency we can contribute to this
study is more towards Python based on the top five libraries of Table 2. Furthermore, our
findings show that Waffle is the most used toggling library with 32% (132) of the projects in
our dataset. For these two reasons, we decided to study projects that use the Waffle library.

4.2 Toggle Components

In this section, we present the toggle components for the purposes of our study, and
we compare them to the elements of a toggling subsystem as previously introduced in
Section 2.1.

We classify the components that integrate feature toggles to support static analysis. In the
further sections of this study we identify and extract feature toggles from the source code
of several projects using static analysis techniques. In consequence, this process requires a
structured definition of what a feature toggle looks like in the source code.

To perform our classification, we combined the implementation information from
the existing literature with the results of a manual analysis of two Python projects,
osf.io (Center for Open Science 2013) (53,321 commits) and edx-platform (edx-
platform 2011) (52,538 commits). These two projects use Waffle (Django Waffle —
django-waffle 0.14.0 documentation 2018), a library to implement feature toggles in appli-
cations built on top of the Django web framework (The Web framework for perfectionists
with deadlines — Django 2019) for Python (Ray et al. 2014). We selected these two projects
because they have more commits than any other project with feature toggles in our dataset.
Lastly, we grouped the intended effects of the relevant source code and we consolidated the
resulting groups in the following toggle components: Declaration, Router and Point.

A Declaration is a toggle configuration in Hodgson terms (Hodgson 2016). Declarations
map a feature toggle with a unique identifier, usually a human-friendly name. Declarations
could include a default state or logic necessary for a Router to evaluate. It is not manda-
tory to store the default state of a toggle in the source code, some implementations use
databases or external services for this purposes, hence, Declarations are optional in our
studied projects. The Code Listing 1 shows an example of a Declaration.

Routers take a feature toggle identifier, evaluate the Declaration with an optional context
and return a value, i.e. the state of the feature toggle at a specific execution. A context can be

Listing 1 A Declaration example named after a combination of WAFFLE FLAG NAMESPACE and
enable debugging. Adapted from edx-platform (edx-platform 2011)

 15 Page 10 of 26 Empir Software Eng (2021) 26:15

Listing 2 Example of a Router wrapped in a function. Adapted from edx-platform (edx-platform 2011)

any object or value relevant to the Router at the moment of evaluation. Examples of a con-
text are a user entity or a session id. Prior work (e.g., Rahman et al. 2016) have shown that
Routers can be wrapped in other functions or the returned value can be assigned to a vari-
able. The Listing 2 presents an example of wrapping a router. In this example, the function
is secondary email feature enabled wraps the Router switch is active,
from the Waffle library.

Our Router definition resembles to the toggle router seen in the different implemen-
tation techniques suggested by Hodgson, however, we also embrace the observation of
Rahman et al. when the value of their router is assigned to a variable.

A Point is where the feature branching happens. These components use the values from
the Routers to decide which code branch is executed. From our manual analysis, Points
were always present in the code. We also consider all code branches as part of the Point,
thus, this concept extends the definition of a point stated in other studies. Listing 3 shows
an example of a Point.

Interestingly, we also observed other forms of toggle states wrapping behind special
language-dependant expressions or statements. For example, Python provides Decorators as
a way to extend functions (PEP 318 – Decorators for Functions and Methods — Python.org
2003). Listing 4 depicts the usage of this pattern serving both as a Router and a Point using
the @waffle switch decorator.

4.3 Toggles Extraction

To support the analysis of our first research question, we extracted the toggle components
across the toggled projects identified in Section 4.1. We used our classification of tog-
gle components from Section 4.2 to serve as an indicator of the existence of toggles. In
this sense, wherever Declaration, Router or Point are identified while exercising our static
analysis, we can tag that portion of code as part of a feature toggle.

The toggle components of the selected projects were obtained using extractor,3 a
command-line tool we built to extract the toggle components across the history of a git
repository, pair the versions of the toggle components, and report the resulting differences
in a JSON format, as shown in Fig. 2. From a detail perspective, extractor collects the
toggle components of a given file using library-dependant processes called parsers, via
standard I/O. For this reason, we created a Python parser and integrated it into extrac-
tor to obtain the toggle components provided by Waffle (Django Waffle — django-waffle
0.14.0 documentation 2018). We made the Python parser capable of identifying Routers and
Points in both regular Python files and Django templates using the Django Template Lan-
guage for Django 2.1 (The Django template language — Django documentation — Django
2019). In contrast, we decided not to support Declarations, because Declarations are usually
stored in a separate database system and we could not obtain access to this data from some

3https://gitlab.com/juan.hoyosr/extractor

https://gitlab.com/juan.hoyosr/extractor

Empir Software Eng (2021) 26:15 Page 11 of 26 15

Listing 3 A Point with two branches of executions. Adapted from edx-platform (edx-platform 2011)

organizations that use the selected Waffle projects. Our Python parser initially analyzes
Python 2.7 code to Python 3.6.2 using the standard lib2to3 module, and later processes
the code with the built-in ast module. However, if we identify the file is an Django tem-
plate, we only parse the contents of the file using the module django.Template. In any case,
both resulting abstract syntax trees are walked to collect the toggle components according
to their own specified syntax. Additionally, extractor is capable to pair the toggle compo-
nent versions of two commits by exercising different lookup strategies. First, it uses the
-L <start>,<end>:<file> mode of git-log to trace the originating line numbers of
a component at commit tn and choose the component with matching line numbers at com-
mits tn−1, tn−2, ..., t0. Alternatively, and only in case git-log is unable to trace the origins of
a component due to complex modifications in the files, a second strategy is used to choose
a component at commit tn−1 if certain attributes, like the filename and the line numbers,
match between the two versions of toggle components.

We executed extractor and obtained the toggle components of 72 Waffle projects out
of 132. We manually verified a random sample of 25 projects that we could not find any
toggle component, and determined three different reasons: First, the Waffle library is never
used, but referenced as a dependency. Second, the practitioners use the Flag or Switch
Waffle models directly. According to our manual inspection, the Waffle models usage is not
a common practice and is solely used to verify the value of a feature toggle. In contrast, the
Waffle documentation suggests to use the Flag model to create custom functionality when
the default model is not sufficient (Django Waffle — django-waffle 0.14.0 documentation
2018). Lastly, a project uses a modified Waffle utility from a dependant project. This is
the case of api-integration, that depends on custom Waffle extensions defined in
edx-platform. Interestingly, 40 out of 60 projects without toggle components distribute
across 3 organizations: ccnmtl (28), thraxil (7) and edx (5).

We continued our process towards the elaboration of a curated list with the remain-
ing 72 Waffle projects for which we found toggle components. To focus our analysis
in the most valuable projects, the number of feature toggles was considered necessary.
We decided to use an approximation to count the number of feature toggles in a project
based on the toggle name used in the Routers. The reason behind this approximation
is that Routers carry most of the identification information of a feature toggle when
compared to Points, and have more power to identify other missing toggle components.
However, there are edge cases with a dynamic toggle name and it is not possible to

Listing 4 A decorator of the view accessibility. If the toggle is active the method will be executed, if
not, a 404 response will be returned. Adapted from edx-platform (edx-platform 2011)

 15 Page 12 of 26 Empir Software Eng (2021) 26:15

Fig. 2 Internals of extractor, a tool to extract toggle components. extractor collects the toggle components
of a git repository using parsers. Later, at every commit, the toggle components are paired across the history
using tracing and matching strategies. The results are given in a JSON format

extract a string value with a simple static analysis. For example, the usage of two com-
ponents Router1 := flag is active(feature.EZID SWITCH) and Router2
:= flag is active(EZID SWITCH) take the attribute of an object and a variable to
reference the real toggle name, respectively. In our studied projects, we verified that 96% of
the names, attributes and variables are non-generic and meaningful. Accordingly, Router1
and Router2 reference the same feature toggle.

Figure 3 shows that distribution of number of toggles in the 72 Python projects. The
figure shows that most of the projects (83%) use less than 10 feature toggles. Thus, we
decided to analyze projects with no less than 10 Waffle toggles. We choose these projects
because they substantially use more toggles than the rest of the projects that use Waffle as
their toggling library.

Finally, we ended up with a curated list of 12 projects that substantially use feature
toggles. Table 3 shows the names, number of lines of Python code, number of commits, and
the number of features toggles in the selected projects.

4.4 Developer Survey

To answer our second research question, we surveyed 61 practitioners to better understand
why they introduce toggles, and why and when they remove feature toggles in their projects.
With this purpose, we designed an online survey with two sections. First, we ask ques-
tions about the participant’s background. Second, we inquire the practitioners about their
experience with the usage of feature toggles in their projects, from introduction to removal,
specifically, we asked the following questions:

Fig. 3 Right skewed distribution of the approximate number of toggles for 72 projects using Waffle

Empir Software Eng (2021) 26:15 Page 13 of 26 15

Table 3 12 Python projects using feature toggles with Waffle

ID Projects NLOC Commits Toggles

1 zamboni 102,582 25,542 84

2 ecommerce 63,118 3,201 49

3 course-discovery 61,693 2,469 27

4 osis 109,950 23,863 26

5 edx-platform 406,602 52,538 23

6 edx-analytics-dashboard 14,528 1,734 20

7 kitsune 67,201 7,357 20

8 osf.io 217,599 53,321 18

9 Jiller 6,350 994 17

10 wardenclyffe 12,017 3,991 13

11 tndata backend 55,123 3,368 13

12 bedrock 85,726 12,410 12

− Mean 100,207 15,899 27

− Median 65,160 5,674 20

Q1. How would you best describe your profession?
A question with the following multiple choices and the last choice is a free-text form:
Release Engineer, Software Architect, Chief Technical Officer (CTO), Software
Engineer or Developer, Quality Assurance (QA) Engineer, and Other.

Q2. How many years of professional or development experience do you have?
A selection question with the following options: <1 year, 1-3, 4-5, more than 5 years.

Q3. When/for what reason do you introduce toggles in your project?
A question with the following multiple choices and the last choice is a free-text form:
Trunk-based development/WIP, Canary Release, Dark Launches, A/B or Multivariate
Testing, Blue-green Deployments, Kill Switch, and Other.

Q4. Do you ever remove features toggles? If so, why/when do you remove these feature
toggles?
We ask this open-ended question to give respondents maximum flexibility to express
their opinion and experience with the usage of toggles.

Participant Recruitment To identify the sample of participants in our survey, we collected
a list of emails and names from two different sources: direct contacts of the authors, ref-
erences from our related literature in Section 3, and contributors to our list of 53 toggling
libraries from Section 4.1. To do so, we extracted the contributors’ names and emails for
each project in our dataset. This specific set of practitioners can be considered to be the
developers who have experience with using feature toggles. Later, we sent email invitations
of our survey to 942 unique participants.

However, since some of the emails are returned for several reasons (e.g., the email server
name does not exist, etc.), we successfully reached 877 possible practitioners. After 10 days
we stopped receiving answers and we ended up with 61 responses. These entries translate
into a 6.96% response rate, which is acceptable when it is compared to the response rate
reported in other software engineering surveys (Smith et al. 2013).

Table 4 shows the development experience of the participants, their positions and the
source where we collected their email from. Of the 61 participants in our survey, 47

 15 Page 14 of 26 Empir Software Eng (2021) 26:15

Table 4 Background of survey participants

Experience # (%) Position # (%) Source # (%)

1 - 3 8 (13.1) Developer 45 (73.8) Library maintainers 24 (39.3)

4 - 5 6 (9.8) Architect 7 (11.4) Anonymous 22 (36.1)

>5 47 (77.1) CTO 5 (8.2) Direct contacts 8 (13.1)

Other 4 (6.6) Referrals 7 (11.5)

participants have more than 5 years of development experience, 6 responses have between
4 to 5 years, and 8 participants claim to have between 1 to 3 years of experience. As for the
participants position, 45 participants identify themselves as software engineers or develop-
ers and 7 participants as software architects. Interestingly, 5 participants identify themselves
as chief technology officers (CTO). The remaining four participants identify as other posi-
tions not listed in the question including, designer, IT consultant, and build configuration.
In the final column of the table, we provide the source of the participants.

24 respondents are maintainers of a toggling library, 22 did not provide any email and 15
correspond to either direct contacts of the authors or referrals.

5 Preliminaries: What are Feature Toggles Used for?

Before delving into our study about the removal of toggles, we want to better understand
what the practitioners use feature toggles for. We do so since prior work only briefly exam-
ined the use of feature toggles or provided anecdotal evidence (Neely and Stolt 2013;
Rahman et al. 2016; Schermann et al. 2016). Thus, we answer this question in order to better
understand the usage of feature toggles from the practitioners perspective.

We ask practitioners in our survey “What they use toggles for?” and we provide them
with a list of usage patterns of feature toggles as detailed in Section 2.2. Then, we analyze
the responded usage pattern across the demographics of the participants. In addition, to
uncover potential relationships between the reported usage patterns and the demographics
of our surveyed practitioners, we also aggregate the usage patterns across the position and
years of experience of the practitioners.

Our surveyed practitioners reported more than six usage patterns of features toggles.
Table 5 shows the feature toggles usage patterns. For each usage pattern, we provide the

Table 5 Usage patterns according to the years of experience and the position of the practitioner

Developer Architect CTO Other

Usages # (%) 1 to 3 4 to 5 >5 >5 >5 >5

Trunk-based 50 (82.0) 7 4 25 6 4 4

Dark 38 (62.3) 3 3 18 7 5 2

Kill 38 (62.3) 4 3 18 6 5 2

Canary 32 (52.5) 4 4 15 3 4 2

A/B 27 (44.3) 4 2 16 2 3 0

Blue-green 7 (11.5) 0 1 4 1 1 0

Other 6 (9.8) 2 0 3 1 0 0

Empir Software Eng (2021) 26:15 Page 15 of 26 15

frequency, the development experience and the role of the participants who reported these
usage patterns. From Table 5, we observe that the most used patterns of feature toggles
are trunk-based development/WIP (82%), dark launches (62%), and kill switch (62%),
regardless of the experience or position of the practitioner. In contrast, only 7 practitioners
(12%) indicated they use feature toggles to exercise blue-green deployments. Interestingly, 6
practitioners (9.8%) reported other usages of feature toggles that do not belong to the afore-
mentioned patterns. For example, some practitioners reported that they use feature toggle
as a “configuration management in preprod environments”, as a “way of toggling messages
to users or temporarily switching off stuff”, and as “a[sic] la carte pricing of some fea-
tures”. Due to the fact that some practitioners provided more than one usage pattern, the
percentages add up to more than 100%.

These preliminary results can be compared in various ways with other studies. Scher-
mann et al. (2016) mentioned Canary Releases and A/B Testing usages account for 57% and
50% respectively, and in our case, we see a similar usage trend with nearly 53% and 44%
respectively. Furthermore, Rahman et al. (2016) mentioned feature toggles can enable fast
context switches when comparing trunk-based development to feature branches. They asso-
ciate this practice in 97% of toggle changes happening in the development phases of Google
Chrome. In our study, we observe a similarity with the usage of this practice, because it is
the most indicated pattern according to 82% of our surveyed practitioners.

Most practitioners use feature toggles to exercise trunk-based development
in combination with dark launches and kill switches.

6 Results

In this section, we answer our main research questions about the removal of feature toggles.
Specifically, we take a two-pronged approach where we first quantitatively examine the
removal of feature toggles. Then, we complement these findings with qualitative findings
from our developer survey. For each research question, we discuss the motivation behind
the question, then, we detail the approach to obtain an answer, and finally, we present and
discuss our findings.

RQ1. How long do toggles remain in a project before they are removed?

Motivation Our goal is to examine how long feature toggles remain in a software project.
Specifically, since prior work advocates to keep a manageable number of feature toggles and
that long-term toggles challenge this practice, we want to quantitatively verify the longevity
of the toggles in reality. Answering this question helps us provide empirical evidence on
how long a feature toggle lives in a software project.

Approach To answer this question, we perform two complementary quantitative analyses.
First, we examine the amount of removed feature toggles. Second, we run a survival analysis
to determine how likely the feature toggles would remain in our studied projects after a
given time.

To measure the amount of removed feature toggles in our study, we use the introduction
time of the extracted toggle components as described in Section 4.3 and check whether these
components are removed or not. Then, we measure the percentage of toggle components that

 15 Page 16 of 26 Empir Software Eng (2021) 26:15

Fig. 4 Distributions of removed toggle components and the number of weeks toggle components survive

are removed over all the toggle components ever used in the projects. We use the percentage
of removed feature toggles instead of the raw number since these projects vary in the number
of used feature toggles.

In the second part of answering this research question, we run a survival analysis of
feature toggles for each project to discover the proportion of surviving feature toggles after
a given time. Each survival analysis is resolved using the Kaplan-Meier estimator, a non-
parametric statistic used to estimate the survival probability of subjects across time (Kaplan
and Meier 1958). We decide to choose the Kaplan-Meier estimator because it can take into
account the toggle components not yet removed at the last commit of each studied project
(i.e. right-censored data).

Findings Figure 4 shows two distributions: the proportion of removed toggle components
and the number of weeks the toggle components survive for all 12 Python projects using
Waffle. From Fig. 4a, we observe that the projects remove an average of 65% toggle com-
ponents. However, we find no strong trend in the amount of removed toggle components
as the measurements spread along the axis. 50% of projects remove between 38% and 90%
of toggle components. We detail some interesting cases on the remaining 50% of projects.
On one side, tndata backend (13 toggles) removed 25% of Routers. On the other hand,
the team behind bedrock (12 toggles) removed 100% of its toggle components. We con-
firmed with Mozilla developers4 that they have not created feature toggles recently and the
Waffle database tables have been hard to remove, thus, the Waffle library remains as a depen-
dency. In Fig. 4b we see that most of the toggle components are removed before week 49,

4Through our personal correspondence with Mozilla Engineers.

Empir Software Eng (2021) 26:15 Page 17 of 26 15

Fig. 5 Survival analysis of feature toggles in 12 Python projects. The y-axis indicates the percentage of
toggle components that are likely to survive after a number of weeks

with a median of 13 weeks. On the contrary, edx-analytics-dashboard (20 toggles)
and osis (26 toggles) keep more than 50% of their toggle components beyond 49 weeks
after introducing them in the code, with 15 and 40 remaining toggle Points respectively.
According to the chief architect of Open edX,5 a feature toggle that lives beyond 49 weeks is
acceptable when it aligns with an “Opt-out” (2 years), “Open edX option” (3 years), “Ops
- Graceful Degradation” (5 years) or “VIP/White Label” (5 years) use cases, as detailed
in their best practices proposal, OEP-17 (Asthagiri 2018). On the contrary, 49 weeks for a
feature toggle to live in osis is beyond than expected, based on the information provided
by a Software Architect of osis.6 The team behind osis uses feature toggles to hide par-
tially implemented features and as kill switches to deactivate a feature that could cause data
damage in a production environment. This same developer mentioned their feature toggles
should be “short term”, to align with their methodology to deliver value every two weeks.

In Fig. 5 we provide the survival curves of the toggle components for the 12 Projects
using Waffle. Here we see that osf.io (18 toggles) is likely to keep 62% of their toggle
components after week 28. However, one of their software engineers7 acknowledges that
they usually keep feature toggles in the code longer than “a couple of months”, due to a
trade-off between the “team’s external development commitments”, the “current through-
put” and the effort that involves the removal of the feature toggle. In short, practitioners in

5Contacted via the slack channel of OpenedX.
6Contacted via personal correspondence.
7Via personal correspondence with a Software Engineer of the Center for Open Science.

 15 Page 18 of 26 Empir Software Eng (2021) 26:15

osf.io remove toggles when they “have time to remove” them. Conversely, our results in
Fig. 5 show that edx-platform will likely keep 14% of their feature toggles after week
10 and 1% of their toggle components after week 35, which indicates they invest efforts
to remove feature toggles used as Incremental Release, Launch Date and Ops - Monitored
Rollout, before the 3-months expected lifetime. Similar efforts can be evidenced in the
survival curves of zamboni (84 toggles), as they are likely to remove 36% of feature tog-
gles before their 30-days canary release usages.8 However, zamboni and kitsune have
the two-highest survival median times of living feature toggles, with 245 and 346 weeks
respectively.

To determine which kind of toggles remained in the source code and assess potential
implications, we manually collected evidence on the usage patterns of 103 toggles with
a lifespan greater than 49 weeks. To obtain the evidence of usage patterns, the first two
authors manually looked up in the source code, commits, pull requests, and issue tracking
systems of each feature toggle. The first two authors determined the expected lifetime of the
toggles (short/long) independently. We measured our agreement with a weighted Cohen’s
Kappa coefficient, a well-known statistical method scaled between -1.0 and 1.0, where a
negative value indicates a poorer than chance agreement, zero indicates a chance agreement,
and a positive value indicates a better than chance agreement. In our case, the level of
agreement was 0.88, which is considered as an excellent agreement. In cases where there
was a difference, the two annotators discussed each case to reach a consensus using the
concrete evidence.

Based on our manual analysis to determine the expected lifetime of the toggles that stay
for more than 49 weeks in the source code, we found that 64% of the feature toggles are
meant to be long-term, and 19% short-term; for 17% of them we could not find any clear
usage pattern (e.g. kill switch, A/B test, etc.) evidence. In an example of a long-term tog-
gle, allow uploads (360 weeks) from wardenclyffe, the developer indicates in the
commit message that the toggle is introduced to control the “maintenance mode” in the
web application, which is a feature expected to remain available in case the application
needs to enter in this state. Comparatively, the case of optional location fields
(117 weeks) in ecommerce project, which is a short-term toggle, used as “a fallback
mechanism for the backend to not require some fields while running” an A/B test in case
“something bad happens”. In total, 7 projects accrue for more than 2,900 weeks of short-
term toggles that live after 49 weeks; kitsune (3 toggles) and ecommerce (6 toggles)
lead with 934 and 747 weeks respectively; on the contrary, tndata backend (2 toggles)
and course-discovery (1 toggle) accrue for 120 and 114 weeks respectively.

To conclude, projects remove feature toggles in different proportions and moments after
introducing them. However, 25% of the feature toggles remain in the source code after 49
weeks and, for some projects, this lifetime is significantly longer than expected.

RQ2. Why and when practitioners remove toggles?

8Via our personal correspondence with the project’s Engineering Manager at Mozilla.

Empir Software Eng (2021) 26:15 Page 19 of 26 15

Motivation Although our quantitative results provide us with hard numbers of how much
feature toggles are removed and how long they stay in a Waffle project, we still do not
understand why practitioners perform these removals and when. In this sense, we would like
to know whether there are certain activities or times in a project where practitioners remove
feature toggles, to later compare and discuss.

Approach We survey practitioners with different backgrounds to understand why and when
they remove feature toggles. To analyze the free-text answers for these two questions, we
perform an iterative coding process to categorize the participants’ responses (Corbin et al.
2008). We first print all of the responses and manually analyze them. The first two authors
carefully read the participant’s answers and come up with a number of categories that the
responses fell under. Next, the same two authors go through the responses and classify them
according to the extracted categories. To confirm that the two authors correctly classified the
responses to the right category, we measure the classification agreement between the two
authors. To do so, we use the well-known Cohen’s Kappa coefficient (Cohen 1960). Cohen’s
Kappa coefficient is a well-known statistical method that is used to evaluate the inter-rater
agreement level for categorical scales. The resulting coefficient is scaled to range between
-1.0 and 1.0, where a negative value means poorer than chance agreement, zero indicates
exactly chance agreement, and a positive value indicates better than chance agreement. We
found that the level of agreement was 0.81 which is considered to be an excellent agreement.
At the end, for the few cases that annotators failed to agree on, a third author was consulted
to resolve the differences and categorize these cases.

Findings Our results show that nearly 82% of the participants responded ‘YES’, meaning
they remove features toggles from their projects, while almost 5% responded ‘NO’. We
also found that 8 participants (13.11%) indicated that they rarely removed the toggles or
it depends on the type of toggles. For example, the participants that use feature toggles as
kill switches expressed that they do not tend to remove feature toggles as part of their usual
removal cycle.

As for the reasons why practitioners remove feature toggles, we were able to extract
three main categories across the 58 participants that conditionally or unconditionally remove
feature toggles (95.08%). We describe the categories and provide some examples below:

1. Follow release process (21.32%). The most cited reasons for removing features tog-
gles reported by the participants of our survey is the fact that they follow a release
process that enforce the removal of feature toggles after a certain time. For instance, the
participant P6 explains her reasons as follows: “It is built into our development cycle.
Each toggle has an expiration date in which it needs to be merged in the code.”.

2. Feature no longer supported (8.2%). Practitioners also reported that they remove fea-
tures toggles once they decided not to release the feature that was toggled. For instance,
P12 stated “Yes, ASAP after the feature is stable and has been turned on for everybody.
Or after the feature is rejected. Usually within 1-2 months.”

3. Reduce technical debt (8.2%). Interestingly, more than 8% of the participants in our
survey see that unused feature toggles can lead to some technical debt in their projects.
Thus, practitioners reported that one of the main reasons of removing feature toggles is
to eliminate the technical debt. For instance, P21 said “Yes. We view toggles as technical
debt, and try to remove them as soon as possible, e.g when we are confident a feature
works as intended in production”.

 15 Page 20 of 26 Empir Software Eng (2021) 26:15

About 13% of our surveyed participants stated that they remove feature toggles depend-
ing on the situation. Particularly, 4.92% of the participants indicated that feature toggles
related to Kill switches remain in the code for a long time. For instance, P37 reported that
“The only feature flags that persist in the codebase long-term are kill switches.”.

We also ask the practitioners when they decide to remove feature toggles from their
projects. We were able to classify the responses of 58 practitioners that remove feature tog-
gles into four main categories. In the following paragraphs, we describe these categories
and provide concrete examples from the practitioners responses.

1. The Feature is stable and in production (77.05%). The majority of the practitioners
in our survey reported that they remove feature toggles when the toggled features are
stable and become part of the projects. As an example, the practitioner P24 said “[W]e
aim to remove toggles some time after successful activation in all context[s] and
environments.”

2. Regular/scheduled audit (16.39%). A less common category reported by practitioners
is that they remove features toggles when practising cleanup audits. For example, the
participant P44 stated that: “Yes, after regular audits of toggles in code”. Similarly, the
maintenance campaign of Chrome (Rahman et al. 2016) can be located in this group.

3. A/B test is done (6.56%). Also, practitioners reported that the removal of feature tog-
gles is related to test strategies they follow. They stated that they remove toggles when
their A/B Test is passed. One practitioner explain this as follows; P27 “Yes. When done
with A/B testing for instance. Canary release toggles and Kill switches have a tendency
to stay for a while, until someone decides to clean it up.”

4. During refactoring (1.64%). A less frequent category reported by practitioners is
the fact that they remove feature toggles when they perform refactoring activities. For
example, P5 “Rarely, mostly during refactoring to reduce tech debt/feature no longer
supported”.

Finally, almost 9% of the practitioners stated that they remove toggles in different occa-
sions but we could not group them into a specific category since they are a small portion.
For example, the participant P53 said “Yes, not however in a consistent fashion. I just tend
to notice after a while that a given toggle is only ever in one state (because the need for it
to be in multiple states has passed) and I then remove it while making other changes to the
code.”

Most practitioners remove feature toggles as part of the life cycle of a feature,
in audits, or when refactoring. Still, 5 % keep kill switches for long periods
or do not remove feature toggles at all.

7 Discussion

Given that this study is one of the first to focus on the removal of feature toggles, we present
a number of possible implications of our findings. Specifically, we focus on the possible
implications for software engineering researchers and practitioners.

Implications for Researchers Our study provides empirical evidence of special considera-
tion to researchers interested in exploring solutions to the issues experienced by practitioners

Empir Software Eng (2021) 26:15 Page 21 of 26 15

that leverage feature toggles. Based on our results, we find that, first, researchers should
avoid generalizations regarding the number of removed feature toggles or the time practi-
tioners remove feature toggles across multiple projects. We have not only found that these
measurements significantly differ across Waffle projects, but that they also differ among
projects of the same organization and even when compared to projects of previous stud-
ies. Hence, the verdict is still out on when, how and if feature toggles should be removed
(or managed). We believe that our study is a step in the right direction, but more empirical
studies are needed.

Second, decomposing feature toggles into less complex elements can provide interesting
perspectives of analysis. For example, we observed that Routers and Points are removed
differently in most of the projects we studied. Also, their discrepancy is useful to identify
feature toggle elements by future research.

Implications for Practitioners Our study demonstrates that feature toggles remain useful
for software developers, architects, engineering managers and chief technology officers of
any-sized projects. The results here presented amplify both the values and the struggles that
experienced practitioners of feature toggles have kindly shared with us. We are not aware
of any silver bullet regarding the management of feature toggles, but we have reported
empirical evidence on multiple ways other projects keep their inventory of feature toggles.
Special consideration should be taken to communicate and integrate the management of
feature toggles into the workflow and tooling of the project.

Additionally, the accumulation of feature toggles in the code is not necessarily a bad
thing when done in a methodical manner. The decision to accrue “toggle debt” should be
adverted and balanced between the business and the available engineering capacity. Hence,
if your project has feature toggles that live for a long time, that might not necessarily be
a bad thing. As opposed to long-term toggles, the accumulation of short-term toggles after
long periods could have potential negative implications, such as catastrophic misconfigura-
tions (Securities and E. Commission 2013) or hard to maintain code bases (Neely and Stolt
2013; Rahman et al. 2016).

Further, as with any software system, practitioners should expect change in the life-time
of their feature toggles. While the usage patterns of feature toggles can help planning for
their management, practitioners should be aware that feature toggles can easily transition
from one usage to another. Also, to reduce the risk of an unwanted behaviour of a soft-
ware system, avoid the reuse of feature toggles in your system and make the necessary
adjustments to remove all toggle components from your system when not needed anymore.
By understanding the elements of a toggling subsystem practitioners can identify scattered
Declarations, Routers or Points. The more scattered, the more places in the source code
practitioners would need to affect to cleanup a feature toggle. Declarations stored in external
databases, not in code, should be of special interest. Finally, maintainers can take advantage
of the components to adjust their toggling libraries to help practitioners track the discrep-
ancies between the removal of Declarations, Routers and Points, and potentially minimize
lingering toggle components or dead code.

8 Threats to Validity

In this section, we discuss the threats to the validity of our study. We discuss internal validity,
construct validity, and external validity (Yin 2009).

 15 Page 22 of 26 Empir Software Eng (2021) 26:15

8.1 Construct Validity

Construct validity considers the relationship between theory and observation, in case the
measured variables do not measure the actual factors. First, to understand the structure of
used toggle components in a project, we manually examine two projects. This process is
maybe influenced by human judgment. However, the first author, who lead the analysis, has
several years of industrial experience and that condition give us confidence in the process.
Second, we selected three sources to obtain toggling libraries. This selection could also be
affected by human judgment factors. However, we did multiple explorations in academic
databases and in other web-sites related with the technique, to reduce the chances of missing
important libraries. Third, the augmented list of toggled projects in our study setup could
show less commits than real. GitHub API returns empty results when the commit of the
contributors do not match registered users. To allow these projects to make it into our final
list, we do not impose high restrictions in the number of commits.

8.2 Internal Validity

Internal validity concerns factors that could affect our analysis and findings. First, our
method to identify projects that depend on toggling libraries is prone to recall issues from
the GitHub API limitations. It is known that GitHub limits the number of returned items
(1,000) even if paging is used (GitHub 2011a), and to respond with incomplete results when
their search engine is not fast enough to deliver all the known items (GitHub 2011b); we
reduce the potential recall issues in two ways: one, by creating new searches of the same
term from a bisect-by-file-size procedure whenever a response indicates this behaviour, and
two, by searching GitHub projects over another data source like Libraries.io.

Another possible source of validity concerns is our extractor tool, whenever it performs
incorrectly or when biased towards any result. extractor does not support identifying Decla-
rations in Waffle, or direct usages of Waffle models to perform trivial feature toggle checks
and deviate from the official library documentation (Django Waffle — django-waffle 0.14.0
documentation 2018). Also, the files encoded in a character set other than utf-8 are ignored,
even if they could be completely valid and contain toggle components. Additionally, we
use relaxed settings and automatic fixes in the standard library lib2to3 to create AST rep-
resentations from Python 2.7 code files, and increase the amount of useful files. Another
important threat are the potential miss of template files containing toggle components. To
mitigate this issue we created to the best of our knowledge a custom template loader on top
of the default Django loader to bypass special template libraries and tags.

Moreover, we explain in Section 4.3 that extractor heavily trusts git-log when pairing
versions of a toggle component. Given git-log is not 100% accurate, the same toggle com-
ponent could be reported to be removed and then added, again, like if a different one. To
measure the presence of this issue in the results of our extractor tool, we randomly sam-
pled 5% of the 322 extracted toggles and validated their associated toggle components. We
found that extractor reported a toggle component as removed and then added for a second
time at the same commit, in 6% of the cases after name normalization. In addition, to miti-
gate other potential extractor deficiencies we created and exercised automated tests for the
different components of the tool, and we took advantage from every run against our studied
projects to improve our tool to extract toggles. Lastly, our survey and its analysis are prone
to human factors. However, we were careful to design the survey questions with most of the
researchers involved, we selected our practitioners from trusted sources, and we followed
an iterative coding process for our free-text analysis.

Empir Software Eng (2021) 26:15 Page 23 of 26 15

To study the reason why and when practitioners remove feature toggles, we surveyed 61
practitioners and none of them worked with any of the authors of this study at the moment
the survey was made available. Also, no participant is a contributor to any of the 12 Python
projects in Table 3. While there is potential that our survey participants may not have pro-
fessional experience in using feature toggles, none of surveyed developers mentioned that
she/he/they does not have feature toggle experience, which gives us confidence that our
survey participants are representative of feature toggles developers.

Our method to identify feature toggles cannot automatically resolve why they were not
removed. Hence, the toggles identified as not removed in our dataset, may not necessarily
indicate bad practices by the project.

8.3 External Validity

This type of validity threat considers the generalization of our findings. First, our back-
ground study cannot guarantee all existent toggle components were identified. This process
was a manual process and has a human factor of subjectivity involved. However, we
explored multiple projects and revisited when necessary to resolve conflicting patterns. To
uncover the removal trends of feature toggles, we examined twelve open-source Python
projects that contain at least ten Waffle toggles, hence, our findings may not generalize
to other Python projects, especially those that are not open-source. That said, our work
is an empirical data point in the toggle removal area. We plan to (and encourage other
researchers to) build on this knowledge in the future. To facilitate such efforts, we make
our dataset publicly available. To understand why and when practitioners remove feature
toggles, we surveyed practitioners and received 61 responses. Although we believe this is a
sufficient number of responses, our results may not hold for all practitioners, including the
practitioners of our 12 Python projects.

Our 53 toggling libraries are a small sample of libraries to enable feature toggle capa-
bilities and they could be distant from all the existent toggling libraries out there. These
characteristics avoid the results of our study to be generalized to different subjects. To
reduce the risk of generalizing our results, multiple authors analyzed the setup, the execution
and our findings.

9 Conclusion

Feature toggles is a technique that allows practitioners to hide features from execution at
will. Several industrial companies use it in their development processes to build high quality
software, while others have reported negative experiences related to the survival time of fea-
ture toggles in the source code. However, very little is known from the literature about how
feature toggles are removed in software projects. In this paper, we examined the removal of
feature toggles with both qualitative and quantitative methods.

We found evidence of long-purposed kill switches when analyzed 12 open source
projects written in Python. Interestingly, 75% of their feature toggle components were
removed from the source code within 49 weeks after introduction. We identified remain-
ing old feature toggles not related to critical features that could degrade the behaviour of
the application. In our opinion, this could indicate that new usage patterns are emerging or
that the project has inappropriate feature toggles maintenance. Later, we conducted a sur-
vey with 61 practitioners to understand the conditions to remove feature toggles from their
projects. Most of the practitioners remove feature toggles either as part of the life cycle of

 15 Page 24 of 26 Empir Software Eng (2021) 26:15

a feature, in the case of a regular audit, or when refactoring the source code. However, 5%
of the surveyed practitioners reported not to remove kill switches as frequent as other usage
patterns or at all. The results of our study provide empirical evidence that despite the sur-
veyed practitioners expressed they retire feature toggles from their projects, a significant
amount of feature toggles in our quantitative experiment remain in the code for long periods
of time carrying potential negative risks.

We believe the software community can benefit from a better understanding of the fea-
ture toggles landscape, as it is one of the drivers towards rapid value delivery. In the future,
we aim to investigate the possible problems associated to feature toggles. Specifically, the
impact in the quality of the software when long-term feature toggles are present and the
technical debt caused by feature toggles as mentioned by more than 8% of our surveyed
participants, are captivating open fields. Also, while this study focuses on features toggles
that meant to be removed, it is also important to examine the long lived features toggles.
Additionally, the study on the relationship of configuration engineering and feature toggles
could lead to unify perspectives and best practices. Also, the projects that reference tog-
gling libraries as dependencies, but do not present any feature toggles are interesting study
subjects. We encourage the researchers to improve in our methods and tools; towards even
more insightful perspectives of powerful techniques for the daily-software developer.

Acknowledgments We would like to thank the practitioners who devoted their time and effort to respond
to our online survey, and to all the practitioners of Mozilla, Université catholique de Louvain, Open edX,
Tennessee Data Commons and the Center for Open Science, that responded back to our call and contributed
their valuable experience using feature toggles in their projects.

References

Center for Open Science (2013) https://github.com/CenterForOpenScience/osf.io. Accessed 2019-01-09
Django Packages : Feature Flipping (2018) https://djangopackages.org/grids/g/feature-flip/. Accessed 2018-

11-05
Django Waffle — django-waffle 0.14.0 documentation (2018) https://waffle.readthedocs.io/en/stable/.

Accessed 2019-01-11
edx-platform (2011) https://github.com/edx/edx-platform. Accessed 2019-01-09
Libraries.io - The Open Source Discovery Service (2015) https://libraries.io/. Accessed 2019-01-09
The Django template language — Django documentation — Django (2019) https://docs.djangoproject.com/

en/2.1/ref/templates/language/. Accessed 2019-06-16
The Web framework for perfectionists with deadlines — Django (2019) https://www.djangoproject.com/.

Accessed 2019-03-05
PEP 318 – Decorators for Functions and Methods — Python.org (2003) https://www.python.org/dev/peps/

pep-0318/. Accessed 2019-01-23
Adams B, Bellomo S, Bird C, Marshall-Keim T, Khomh F, Moir K (2015) The practice and future of release

engineering: a roundtable with three release engineers. IEEE Softw 32(2):42–49
Adams B, McIntosh S (2016) Modern release engineering in a nutshell – why researchers should care.

In: Leaders of tomorrow: future of software engineering, proceedings of the 23rd IEEE international
conference on software analysis, evolution, and reengineering (SANER), Osaka, Japan, pp 78–90

Asthagiri N (2018) OEP-17: Feature toggles. https://open-edx-proposals.readthedocs.io/en/latest/
oep-0017-bp-feature-toggles.html. Accessed 2020-01-10

Bosworth A (2012) Building and testing at Facebook. https://www.facebook.com/notes/facebook-engineering/
building-and-testing-at-facebook/10151004157328920. Accessed 2019-03-25

Claps GG, Berntsson Svensson R, Aurum AA (2015) On the journey to continuous deployment: Technical
and social challenges along the way. Inf Softw Technol 57(1):21–31

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46
Corbin J, Strauss A et al (2008) Basics of qualitative research: techniques and procedures for developing

grounded theory

https://github.com/CenterForOpenScience/osf.io
https://djangopackages.org/grids/g/feature-flip/
https://waffle.readthedocs.io/en/stable/
https://github.com/edx/edx-platform
https://libraries.io/
https://docs.djangoproject.com/en/2.1/ref/templates/language/
https://docs.djangoproject.com/en/2.1/ref/templates/language/
https://www.djangoproject.com/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/
https://open-edx-proposals.readthedocs.io/en/latest/oep-0017-bp-feature -toggles.html
https://open-edx-proposals.readthedocs.io/en/latest/oep-0017-bp-feature -toggles.html
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/10151004157328920
https://www.facebook.com/notes/facebook-engineering/building-and-testing-at-facebook/10151004157328920

Empir Software Eng (2021) 26:15 Page 25 of 26 15

Feitelson DG, Frachtenberg E, Beck KL (2013) Development and deployment at facebook. IEEE Internet
Comput 17(4):8–17

GitHub (2011) GitHub API v3 — GitHub Developer Guide. https://developer.github.com/v3/. Accessed
2019-01-09

GitHub (2011) Search — GitHub Developer Guide. https://developer.github.com/v3/search. Accessed 2019-
01-03

GitHub (2013) Searching code - User Documentation. https://help.github.com/articles/searching-code.
Accessed 2019-01-03

Harry B (2012) Announcing Continuous Deployment to Azure with Team Foundation Service — Brian
Harrys blog. https://bit.ly/2MvKEkT. Accessed 2019-01-22

Hodgson P (2016) Feature Toggles. https://martinfowler.com/articles/feature-toggles.html. Accessed 2017-
08-30

Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test and deployment
Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils

of mining github. In: Proceedings of the 11th working conference on mining software repositories, MSR
2014, ACM, pp 92–101

Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc
53(282):457–481

Kästner C (2019) Feature flags vs configuration options — same difference? https://www.cs.cmu.edu/
ckaestne/featureflags/. (Accessed on 03/30/2020)

LaunchDarkly (2015) Feature flags - feature flags, toggles, controls. http://featureflags.io/feature-flags/.
Accessed 2018-11-03

Mäntylä MV, Adams B, Khomh F, Engström E, Petersen K (2015) On rapid releases and software testing: a
case study and a semi-systematic literature review. Emp Softw Eng 20(5):1384–1425

Neely S, Stolt S (2013) Continuous delivery? Easy! Just change everything (well, maybe it is not that easy).
In: Proceeding - AGILE 2013, pp 121–128

Osherove R (2016) Feature toggles – enterprise devOps. http://enterprisedevops.org/
feature-toggle-frameworks-list/. Accessed 2018-12-11

Rahman AAU, Helms E, Williams L, Parnin C (2015) Synthesizing continuous deployment practices used in
software development. 2015 Agile Conference, 1–10

Rahman MT, Querel L-P, Rigby PC, Adams B (2016) Feature toggles: practitioner practices and a case study.
In: Proceedings of the 13th international conference on mining software repositories, MSR ’16. ACM,
New York, pp 201–211

Rahman MT, Rigby PC, Shihab E (2018) The modular and feature toggle architectures of Google Chrome.
Emp Softw Eng, 1–28

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code
quality in github. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations
of software engineering - FSE 2014. ACM Press, New York, pp 155–165

Sayagh M, Kerzazi N, Adams B, Petrillo F (2018) Software configuration engineering in practice: interviews,
survey, and systematic literature review. IEEE Trans Softw Eng

Schermann G, Cito J, Leitner P, Zdun U, Gall H (2016) An empirical study on principles and practices of
continuous delivery and deployment. Peer J Preprints 4:e1889v1

Securities and E. Commission (2013) Administrative and cease-and-desist proceedings against knight capital
americas LLC. https://www.sec.gov/litigation/admin/2013/34-70694.pdf. Accessed 2019-01-19

Smith E, Loftin R, Murphy-Hill E, Bird C, Zimmermann T (2013) Improving developer participation rates in
surveys. In: 2013 6Th international workshop on cooperative and human aspects of software engineering
(CHASE). IEEE, pp 89–92

Yin RK (2009) Case study research: design and methods (applied social research methods). London and
Singapore: Sage

Zapata D (2014) Going from 3 week to daily releases at netflix. USENIX Association, Philadelphia

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://developer.github.com/v3/
https://developer.github.com/v3/search
https://help.github.com/articles/searching-code
https://bit.ly/2MvKEkT
https://martinfowler.com/articles/feature-toggles.html
https://www.cs.cmu.edu/ ckaestne/featureflags/
https://www.cs.cmu.edu/ ckaestne/featureflags/
http://featureflags.io/feature-flags/
http://enterprisedevops.org/feature-toggle-frameworks-list/
http://enterprisedevops.org/feature-toggle-frameworks-list/
https://www.sec.gov/litigation/admin/2013/34-70694.pdf

 15 Page 26 of 26 Empir Software Eng (2021) 26:15

Affiliations

Juan Hoyos1 ·Rabe Abdalkareem2,3 · Suhaib Mujahid2 · Emad Shihab2 ·
Albeiro Espinosa Bedoya1

Rabe Abdalkareem
abdrabe@gmail.com

Suhaib Mujahid
s mujahi@encs.concordia.ca

Emad Shihab
eshihab@encs.concordia.ca

Albeiro Espinosa Bedoya
aespinos@unal.edu.co

1 Universidad Nacional de Colombia, Medellı́n, Colombia
2 Concordia University, Montreal QC, Canada
3 Queen’s University, Kingston ON, Canada

http://orcid.org/0000-0003-4017-6126
mailto: abdrabe@gmail.com
mailto: s_mujahi@encs.concordia.ca
mailto: eshihab@encs.concordia.ca
mailto: aespinos@unal.edu.co

	On the Removal of Feature Toggles
	Abstract
	Introduction
	Paper Organization

	Background
	Toggling Subsystem
	Usage Patterns
	Trunk-Based Development
	Dark Launches
	Kill Switch
	A/B or Multivariate Testing
	Canary Releases
	Blue-Green Deployments

	Related Work
	Study Setup
	Identifying Toggled Projects
	Toggle Components
	Toggles Extraction
	Developer Survey
	Participant Recruitment

	Preliminaries: What are Feature Toggles Used for?
	Results
	RQ1. How long do toggles remain in a project before they are removed?
	Motivation
	Approach
	Findings
	RQ2. Why and when practitioners remove toggles?
	Motivation
	Approach
	Findings

	Discussion
	Implications for Researchers
	Implications for Practitioners

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	References
	Affiliations

