
JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 01, NO. 8, AUGUST 2019 1

On the Untriviality of Trivial Packages:
An Empirical Study of npm JavaScript Packages

Md Atique Reza Chowdhury, Rabe Abdalkareem, Emad Shihab, Senior Member, IEEE and
Bram Adams, Senior Member, IEEE

Abstract—Nowadays, developing software would be unthinkable without the use of third-party packages. Although such code reuse
helps to achieve rapid continuous delivery of software to end-users, blindly reusing code has its pitfalls. For example, prior work has
investigated the rationale for using packages that implement simple functionalities, known as trivial packages (i.e., in terms of the code
size and complexity). This prior work showed that although these trivial packages were simple, they were popular and prevalent in the
npm ecosystem. This popularity and prevalence of trivial packages peaked our interest in questioning the ‘triviality of trivial packages’.
To better understand and examine the triviality of trivial packages, we mine a large set of JavaScript projects that use trivial npm
packages and evaluate their relative centrality. Specifically, we evaluate the triviality from two complementary points of view: based on
project usage and ecosystem usage of these trivial packages. Our result shows that trivial packages are being used in central
JavaScript files of a software project. Additionally, by analyzing all external package API calls in these JavaScript files, we found that a
high percentage of these API calls are attributed to trivial packages. Therefore, these packages play a significant role in JavaScript
files. Furthermore, in the package dependency network, we observed that 16.8% packages are trivial and in some cases removing a
trivial package can impact approximately 29% of the ecosystem. Overall, our finding indicates that although smaller in size and
complexity, trivial packages are highly depended on packages by JavaScript projects. Additionally, our study shows that although they
might be called trivial, nothing about trivial packages is trivial.

Index Terms—Trivial Packages, npm ecosystem, Mining Software Repository.

F

1 INTRODUCTION

THE use of third-party packages is becoming increasingly
popular since it allows teams to reduce development

time and costs and increase productivity [1], [2], [3]. A
major enabler for the use of third-party packages (hereafter
referred to as packages) is the capability for developers to
easily share their code through software packages on dedi-
cated platforms, known as software package managers (e.g.
Node Package Manager (npm) and Python Package Index
(PyPI)). Entire ecosystems have been created around these
package managers, e.g., the Node.js ecosystem is largely
supported by npm [4].

Despite the many benefits and wide popularity of using
software packages, they also pose some major drawbacks
such as increased maintenance costs, an increased risk of
exposure to vulnerabilities and even legal issues [5], [6],
[7], [8]. One specific incident, the left-pad incident [3], [9],
triggered a large debate on whether developers should be
reusing packages for “trivial tasks”1. Since then a number of

• Md Atique Reza Chowdhury and Emad Shihab are with the Data-driven
Analysis of Software (DAS) Lab at the Department of Computer Science
and Software Engineering, Concordia University, Montréal, Canada.
E-mail: m wdhu, eshihab@encs.concordia.ca

• Rabe Abdalkareem is with the Software Analysis and Intelligence Lab
(SAIL), School of Computing, Queens University, Canada
E-mail: abdrabe@gmail.com

• Bram Adams is with the Lab on Maintenance, Construction, and Intelli-
gence of Software (MCIS), Département de Génie Informatique et Génie
Logiciel, École Polytechnique de Montrèal, Montréal, Canada.
E-mail: bram.adams@polymtl.ca

Manuscript received April 19, 2005; revised August 26, 2015.
1. The left-pad incident refers to a 11-line package that implements

simple string manipulation. This package was used by Babel, a package
that is used by most major website, including Facebook, Netflix, and
Airbnb.

studies focused on the topic of “trivial packages” and found
that indeed, the left-pad incident is not isolated, and that
trivial packages account for more than 17% of the 800,000
packages on npm [3], [10]. In addition, these packages
tend to be heavily used, with some trivial packages (e.g.,
escape-string-regexp) being downloaded more than
eleven million times per week [11].

The fact that these trivial packages, in terms of the code
size and complexity, play such a central role made us ask
the question are trivial packages really trivial? Although
we do agree that these packages may be small in size and
implement very specific functionality, the fact that they are
so prevalent is something that warrants the questioning of
their triviality. Therefore, in this paper, we examine triviality
of trivial packages based on their usage. In particular, we
focus on the usage of trivial packages in 1) the projects that
use them (project usage) and 2) the role they play in the
ecosystem they belong to (ecosystem usage).

We perform an empirical study by analyzing more than
15,000 JavaScript projects, of which 3,965 depend on trivial
packages. To examine project usage, we use static analysis
to determine the centrality of the files that use trivial pack-
ages and analyze how widely the trivial packages are used
in these files. To examine ecosystem usage, we leverage net-
work analysis to examine the role of trivial packages in the
ecosystems dependency network. Our study is formalized
through three Research Questions (RQs):
• Project usage. RQ1: Are trivial packages used in central

parts of JavaScript projects? Since these packages are
small in size and complexity, one may expect that they
are used in unimportant parts of software projects. Thus,
to better understand how projects use trivial packages, we
examine their role in the source code files of the projects

Candidate
projects from

GitHub

Filter out
immature
projects

Identify
projects that use
trivial packages

1,960,727 15,254

1 2 3
3,965 projects
that use trivial

packages

Figure 1: An overview of our data collection approach.

that depend on them. Using the file-level dependency
graph, we find that files that depend on trivial packages
are very central in their respective projects. This finding
indicates that trivial packages may not be so trivial after
all, since they are used in central parts of the projects that
depend on them.

• Project usage. RQ2: How widely used are trivial pack-
ages in JavaScript projects? In addition to knowing if the
trivial packages are used in central parts of the projects,
we want to investigate how heavily a trivial package’s
APIs are used within a JavaScript file to determine
these package’s importance within the trivial dependent
JavaScript files (i.e., are they only used in one central part
or throughout the projects). Again, we use static source
code analysis to determine the percentage of API calls
that are made to trivial packages. Also, we measure the
entropy of the package to determine how widespread its
use is. We find that trivial packages are at least as widely
used as non-trivial packages, indicating that they may not
be so trivial.

• Ecosystem usage. RQ3: Do trivial packages play a central
role at the ecosystem level? To complement our analy-
sis in RQs 1 and 2, which focus on project-level usage,
we examine the centrality of trivial packages within the
ecosystem. We study the package dependency network
for both direct and transitive dependencies of the studied
projects. We find that trivial packages are more central
to the ecosystem than non-trivial packages. Furthermore,
we find that removing certain trivial packages from the
ecosystem may impact up to 29% of the packages in the
ecosystem. Our result shows that npm trivial packages are
central building blocks in the ecosystem, and hence, their
role is not so trivial.

Our study makes the following contributions:
• To the best of our knowledge this is the first in-depth

study that examine the centrality and role of trivial
packages to projects using them and to the ecosystem
they belong to.

• The findings of this paper are based on an extensive
analysis, which includes a large dataset of JavaScript
projects that depended on trivial packages and the use
of state-of-the-art technique that include dependency
network analysis.

• To encourage replication and further studies on the
use of trivial packages, we have disclosed our dataset
and source code for our analysis in our replication
package [12].

Paper organization: Section 2 presents our study design and
approach. We describe our results in section 3. We discuss
the results and implications of our study in Section 4 and
related works in Section 5. Threats to validity is shown in
Section 6. Finally, Section 7 concludes our paper.

Table 1: Filtering steps of the studied JavaScript projects.

Filtering Step # Projects

JavaScript projects in GitHub 7,863,361
npm projects in GitHub 2,289,130
JavaScript projects that are not npm packages 1,960,787
Filtering out immature and/or inactive projects 15,254

2 CASE STUDY DESIGN
To investigate the role of trivial packages in software
projects, we study a large dataset of JavaScript software
projects that depend on at least one npm trivial pack-
age. Figure 1 shows an overview of our general approach.
We describe each step in our approach below.

2.1 Dataset of Candidate Projects
Since our analysis focuses on understanding the role of
trivial packages in software projects that use them, we
need to study a diverse and sufficiently large number of
JavaScript projects that depend on trivial packages.

To acquire our dataset, we resort to the public GHTor-
rent dataset [13], [14] to extract information about all the
JavaScript projects hosted on GitHub. We extract the data
pertaining to 7,863,361 JavaScript projects that are hosted
on GitHub, as of 15th March 2019. We then filter out
projects that do not use npm as their package management
system. As a result, we found 2,289,130 projects that use
npm as their package management system (i.e., projects
have package.json file, which is the configuration file
for npm projects). Moreover, since some npm packages use
GitHub as their code repository [15], we exclude these npm
packages from our list by crosschecking our list of URLs
and GitHub URLs of all the npm packages. It is important
to note that we exclude npm package repositories from our
dataset so we do not analyze them as standalone JavaScript
projects. We identify 328,343 npm packages in our list of
candidate projects and we filter these packages out.

2.2 Pruning List of Projects
As recommended in prior work [3], [16], we perform extra
steps to eliminate immature projects from our candidate
dataset. To do so, we adopt similar filtering criteria that were
used in prior work [3], [16]. We choose to select projects that

Table 2: Summary of the number of developers, commits,
watchers, and stars for 15,254 JavaScript projects.

Measurement Min. Median Mean Max.

Developers 2 5 6.74 69
Commits 100 271 669 97,504
Watchers 1 6 23.99 2,451
Stars 1 9 303.73 48,765

Table 3: The distribution of “Line of Code” and “Cyclomatic Complexity” of all packages (trivial and not-trivial) used in
our studied JavaScript projects.

Type of packages Line of Code Cyclomatic Complexity

Min. Median Mean Max. Min. Median Mean Max.

Trivial 7 19 19.35 34 1 5 5.324 10
Non-Trivial 36 200 2044.7 853,967 2 50 699.58 313,291

are non-forks, have more than 100 commits by more than
one contributor and have a community interest in them
(i.e., projects that have at least one star and a watcher on
GitHub). Finally, we select the projects that have at least
one external npm package dependency. These filtering steps
allow us to extract a list of 15,254 JavaScript projects that
are the client of npm packages (step 2 Figure 1). Table 1,
shows the steps and number of projects after each step in
the dataset acquisition process. Table 2 shows the summary
statistics for different metrics of the selected JavaScript
projects in our candidate dataset. As the table shows, our
dataset contains a good distribution of projects in terms of
developers, commits, watchers and stars.

2.3 Identifying JavaScript Projects that Use Trivial
Packages
Since the goal of this study is to understand the role of
trivial packages in JavaScript projects, we need to identify
projects that depend on trivial npm packages in the selected
candidate projects. To do so, we start by cloning the selected
15,254 projects. Then, we analyze them following a four-
step approach (step 3 in Figure 1) to identify projects that
use trivial packages.

First, we extract each project’s dependency information
by examining the package.json file, which is the configura-
tion file for npm projects. The package.json, among other
configurations, specifies the list of packages that the project
depends on. We extract the package name and its associated
version for each runtime dependency for each project in our
15,254 projects candidate dataset. We only consider runtime
dependencies since they are required to install and run the
projects.

Once we have the list of dependencies for each project
in our candidate dataset, we download these packages
using the package name and related version information.
We download the dependent packages by using the npm-
pack command [17]. The npm-pack command consults with
the npm registry [18] and resolves the semantic version and
downloads the appropriate ‘tar’ file that contains the source
code of the package for each dependency-version pair.

Third, once we have the ‘tar’ file for each npm pack-
age, we analyze them to identify trivial packages. To do
so, we extract the ‘tar’ file and analyze if the package
is trivial or not by leveraging the definition proposed by

Table 4: The distribution of the number of npm packages
that are used in all the JavaScript projects in our dataset.

Type of packages Min. Median Mean Max.

Trivial 1 2 2.34 31
Non-trivial 1 16 19.69 106

Abdalkareem et al. [3], which categorize a package as trivial
if its number of JavaScript “Line of code (LOC)” ≤ 35 and
“Cyclomatic Complexity” ≤ 10. We analyze all the pack-
ages using the Understand tool [19]. Understand is a static
analysis tool that provides, amongst other metrics, Line of
Code (LOC) and Cyclomatic complexity measures for the
packages. Table 3 shows the distribution summary of Line of
Code LOC and Cyclomatic Complexity CC measurements
of all analyzed trivial and non-trivial packages used in our
studied JavaScript projects.

Forth, we identified projects that are trivial package
dependent (i.e. projects that use at least one trivial package).
To do so, we first used the depchecker [20] tool to extract
the npm packages that are actually used in JavaScript files.
The depchecker tool analyzes the dependencies in a project
to identify how each dependency is used (i.e. identifies
unused dependencies in the JavaScript source code and
dependencies that are missing from package.json). Then, for
each file in the studied JavaScript projects, we extract the
number of actual dependent packages and how many of
these dependent packages are trivial based on the definition
proposed by Abdalkareem et al. [3] (as described in the
previous step). If a file depends on one or more trivial
packages, we consider that file as a trivial dependent file,
otherwise, we consider it as a non-trivial dependent file. In
the same way, if a project has at least one trivial dependent
file then we identify that project as a trivial dependent
project.

According to this approach, in our candidate dataset,
among the 15,254 JavaScript projects that we analyze, 26%
(3,965) of the projects are trivial dependent. Since we want
to analyze the role of trivial packages in JavaScript projects,
we conduct our analysis on these 3,965 JavaScript projects
dataset that use at least one trivial npm package. Table 4
shows the distribution of trivial and non-trivial packages in
the projects in our dataset.

3 CASE STUDY RESULT
This section presents the results to our three RQs. For each
RQ, we provide a motivation, describe the approach used
and present our results.

3.1 RQ1: Are trivial packages used in central parts of
JavaScript projects?
Motivation: Previous work showed that trivial npm pack-
ages are widespread, and has arguably some negative im-
pact on software projects [3]. However, since these packages
are small in size and complexity, one may expect that
they are used in unimportant parts of software projects. To
understand how projects use trivial packages, we examine
their role in the source code files of the dependent projects.
For example, if a trivial package is used in isolated part

Table 5: The distribution of number of files in the studied
JavaScript projects in our dataset. The table shows the dis-
tribution of number of all, trivial, and non-trivial dependent
files in our dataset.

File Type Min. 1st Qu. Median Mean 3rd Qu. Max.

All 10 16 27 49.3 49 1,592
Trivial 1 1 2 4.3 4 161
Non-Trivial 1 14 25 45.7 45 1,592

(i.e., file) in a project then its impact on that project can be
neglected. Answering this question will help us understand
the relative centrality of trivial packages in the software
projects that use them.
Approach: To examine a trivial package’s centrality in a
JavaScript project, we identify the files that use trivial
packages since they provide a direct link between trivial
packages and their centrality in a project.

We examine the centrality of trivial dependent files by
analyzing the file-level dependency graph among the files
of a project and measure the centrality score [21] of trivial
dependent and non-trivial dependent files. To identify the
JavaScript files that are more central in a software project,
we apply network analysis on the file-level dependency
graph of each project and measure the centrality score. The
centrality score of a node in a network reflects how central
that node is in the network [22], [23], [24]. In scientific
literature, network analysis is a popular measure in social
sciences, which studies networks between humans (actors)
and their interactions (ties). In our context, the JavaScript
files are the actors and their inter-dependencies are the
ties. For each JavaScript file within a project, we extract
information on which other files the concerned file depends
on (out-degree) and by which other files the concerned file
is being dependent upon (in-degree). Then, we calculate
the degree centrality score [21] for each file of a project
in our dataset. The degree centrality score is a measure of
the number of in-degree and out-degree for a JavaScript file
within a project. This degree centrality score is normalized
by dividing by n − 1, the maximum possible degree in
a graph that has n total nodes in that graph. The degree
centrality of a node Vi is given by:

Degree Centrality (Vi) =
|N (Vi)|
n− 1

(1)

Where the |N(Vi)| is the number of nodes (files in our
case) that are connected to the node Vi (i.e., file under
examination). The degree centrality score has a value that
ranges between 0 and 1, where 1 means that the node is in
the center of the network (i.e., connected to all other nodes)
and zero indicates that the node is isolated.

To calculate the degree centrality of trivial and non-
trivial dependent files in each project in our dataset, we

Table 6: The distribution of the degree centrality of trivial
and non-trivial dependent JavaScript files.

File Type Min. 1st Qu. Median Mean 3rd Qu. Max.

Trivial 0.00 0.003 0.022 0.061 0.070 1
Non-Trivial 0.00 0.000 0.003 0.021 0.019 1

start by generating a file-level dependency graph represen-
tation of files in every JavaScript project in our dataset. We
use the madge tool to generate the file-level dependency
graphs [25]. The madge tool is a static source code analysis.
It first parses the source code of files and generates the
abstract-syntax-tree (AST) of a given JavaScript file in a
project. It then checks the AST to determine, which module
(i.e, JavaScript file) is being called in another file. Then,
the madge tool constructs a file-level dependency graph of
a project by traversing the generated AST. It starts from
an entry point (i.e, JavaScript file) and detects all import
statements in the AST. All files that are recursively accessible
from the projects entry point are marked as dependent on
files. The output of the madge tool is a file-level dependency
graph that shows each file in a software project and a list of
files it depends on. We configure the madge tool to analyze
every JavaScript project in our dataset and generate a file-
level dependency graph representation. Next, we mark the
trivial dependent files in the generated file-level depen-
dency graph.

After that we run the networkx tool [26] on the generated
file-level dependency graph, to calculate the centrality score
of every file in the generated file-level dependency graph
as explained earlier. The networkx tool is a well-known tool
for analyzing and visualizing social network data. Finally, to
put our results in perspective, we compare and contrast the
degree centrality score for trivial and non-trivial dependent
files.

In addition, to get an in-depth understanding of the
JavaScript file’s relative centrality within a software project,
we rank the files based on their degree centrality score, e.g.,
JavaScript file with highest degree centrality score is ranked
1 and the rank increases with decreasing degree centrality
values. In case if two JavaScript files have similar degrees
of centrality scores, they will have the same ranking. Since
the trivial dependent projects in our dataset vary in the
number of JavaScript files, we segment the projects into
four groups (based on the quartile they fall in) namely
small, small-mid, mid-large, and large projects based on the
distribution of the number of JavaScript files in the projects.
From the distribution of the number of files in the studied
projects, shown in the first row of Table 5, we group projects
having #files < 1st Qu. into small projects; 1st Qu. ≤ #files
< median into small-mid projects; median ≤ #files < 3rd
Qu. into mid-large projects, and #files ≥ 3rd Qu. into large
projects. In addition, to put our results in perspective, we
again compare the distribution of degree centrality rank for
trivial dependent and non-trivial dependent files in each
group of projects.
Results: Table 6 shows the summary distribution of the
degree centrality score for trivial and non-trivial dependent
files in our dataset. Here, we observe that overall the degree
centrality values for trivial dependent files are higher than
that of non-trivial dependent files. The table shows that
the median/mean degree centrality values are 0.022/0.061
and 0.003/0.021 for trivial and non-trivial dependent files,
respectively. To test if the difference is statistically significant
between the two result sets, we applied the non-parametric
Wilcoxon rank-sum test [27]. We determine if the difference
is statistically significant at the customary level of 0.01. We
also estimated the magnitude of the difference between

Figure 2: Distribution of degree centrality rank of trivial de-
pendent and non-trivial dependent files in different project
groups based on number of files.

datasets using the Cliff’s Delta [28] (or d). Cliff’s Delta is
a non-parametric effect size measure for ordinal data. We
consider the effect size values: negligible for |d| < 0.147,
small for 0.147 6 |d| < 0.330, medium for 0.330 6 |d| <
0.474 and large for |d| > 0.474. We found that the results
are statistically significant (p-value < 2.2e-16) with medium
effect size (d = 0.3471).

In addition, Figure 2 shows a beanplot distribution
of the degree centrality rank of trivial dependent and
non-trivial dependent files for the four groups of projects.
From Figure 2, we observe that for each group of projects,
the trivial dependent files have a lower degree centrality
rank than that of non-trivial dependent files, which indicate
that trivial packages are used in central part of the projects.
Also, the results for each segment is significant (p-value
< 2.2e-16). We also measured the effect size and observed
-0.3853 (medium), -0.2397 (small), -0.3355 (medium) and
-0.5040 (large) cliff’s delta value for small, small-mid,
mid-large and large projects respectively. Overall, these
results highlight that trivial packages are used in files that
are more central in the studied JavaScript projects.

To investigate why trivial packages are used in more
central parts of the studied projects, we perform a manual
investigation. To do so, we randomly selected five projects.
Then, for each trivial dependent file in the selected project,
we extracted the trivial packages. After that, we perform
a manual process to understand the type of functionalities
that are provided by the trivial packages in these projects.
For each trivial package, the first two authors examine the
source code and the readme file of these packages.

Based on this manual process, we observe that the ma-
jority of the examined trivial packages in the selected five
projects provide mainly utility functionality. For example,
they provide functionalities such as string manipulation,
stream operation, and file operations. We also found that the
examined trivial packages provide functionalities regarding
different types of data structure manipulation; numerical,
geometric, and logical functionalities.

Non−Trivial

Trivial

0 20 40
Percentage of API calls in JS files (Log Scaled)

Figure 3: The distribution of percentage of API calls for
trivial and non-trivial packages in JavaScript files.

Our findings indicate that trivial packages are used in
central parts of software projects compared to non-
trivial packages. In our dataset, trivial dependent
files have on median 0.022 degree centrality value
while it is 0.001 for non-trivial dependent files. This
difference is statistically significant. These findings
show that trivial packages are used in central parts
of the projects that depend on them. Hence, they may
not be so trivial after all.

3.2 RQ2: How widely used are trivial packages in
JavaScript projects?
Motivation: Thus far, we saw that trivial packages are
used in central parts of the projects that depend on them.
Next, we want to examine the diffusion of a used package
across the projects. In another word, we want to examine
whether trivial packages are used only in central parts of
the projects or their usage is dispersed across different parts
of the projects. For example, prior work showed that if
the Application Programming Interfaces (API) of a pack-
age PkgA are invoked less than APIs’ of another package
PkgB in a software project then this is a clear indication
that PkgB is more important than PkgA in that specific
project [29]. Thus, low usage of trivial package APIs’ in a
JavaScript file suggests that, even if these packages are used
in more central files, these package’s importance within that
file is low. Therefor, we investigate how heavily a trivial
package’s APIs are used within a JavaScript file to determine
these package’s importance within the trivial dependent
JavaScript files.
Approach: To determine how important trivial packages
are within a project, we again perform a two-way comple-
mentary analysis. First, we measure the percentage of each
package’s project programming interface calls in a file that
depends on an external package in our dataset. Then, we
examine how widespread the use of a package is in each
project. Specifically, we use static code analysis and calculate
the following two measures:
Percentage of trivial package API calls in a trivial dependent file:
Although, based on our definition, a trivial dependent file
has at least one trivial package dependency, in fact, it can
have any number of non-trivial package dependencies. In
our dataset, the median number of trivial and non-trivial
packages in trivial dependent files are 1 and 3, respectively.

Non−Trivial

Trivial

0.0 0.5 1.0 1.5 2.0 2.5
Entropy Distribution (Log Scaled)

Figure 4: The distribution of trivial and non-trivial package
API entropy.

Therefore, since these files have a lower number of trivial
package dependencies, we want to understand what per-
centage of total API calls in a trivial dependent file are
associated with trivial packages.

To do so, we use a static source code analysis tool to
extract and measure all the occurrences of external package
API calls in JavaScript files. For each of the source files,
we extract the API call of the external packages using the
Understand tool [19]. We use the Understand tool [19],
which is a source code analysis tool that, among other
things, extracts API calls in JavaScript files and has been
extensively used in other research work [30], [31], [32].

The Understand tool performs a complete lexical parse
of the source code, similar to what a compiler would do.
Using that parse information, it creates a list of “entities”
in the source code. An entity is any semantic object that
the tool can capture information on - such as a class,
method, or variable. Then it creates a database of how all
of those entities are used and how they interact with each
other. We call those uses and interactions “references”. The
Understand API then uses a custom string syntax to search
the generated database to find combinations of references
and entities. For example, give a list of all functions in the
project, or find everywhere that a function in list A is called
by a function in list B. Then, we calculate the percentage of
a packages API calls within a JavaScript file by counting all
the API calls in that file.
External package entropy: We again use the extracted infor-
mation about the API calls of external packages to compute
the entropy of the packages. In our study, the entropy of
a package shows how widely the package is used in a
project. The higher the entropy of a package (i.e., API usage
spread across files.), the more difficult it gets to uproot
the package from the project. Similar to prior work [33],
[34], we define the entropy of an external package as the
distribution of API calls of that package across files. For
example, in a JavaScript project, the package Pkgx’s APIs
are called 10 times in file F1, 15 times in file F2, and twice
in file F3, we calculate the entropy of the package Pkgx as
(− 10

27 log2
10
27 −

15
27 log2

15
27 −

2
27 log2

2
27), which equal to 1.28.

It is important to note that the higher the entropy value
the more widespread is the usage of the package is in a
JavaScript project and if a package is used only in a single
file then its entropy is zero.
Result: Figure 3 shows the distribution of percentage of API
calls for trivial packages and non-trivial packages within the

trivial dependent files. Here, we observe that median value
of percentage of API calls for trivial packages within trivial
dependent files is higher than that of non-trivial packages
with median of 11.76% and 7.69% calls, respectively. We also
examine whether the result is statistically significant and we
also calculate the effect size. We found that the results are
statistically significant (p-value < 2.2e-16) and effect size is
small (Cliff’s delta estimate = 0.25). This API call analysis
of trivial dependent files shows that trivial packages play
important role in these files.

In the second part of analyzing this research question,
we investigate the distribution of API calls of a trivial
package across the project by computing its entropy.
Figure 4 shows a bean-plot distribution of entropy scores
for trivial and non-trivial packages. We observe that
trivial and non-trivial packages have similar entropy score
distribution with median entropy score equal to zero for
both types of packages. Most of the packages (68.067%)
in our dataset have zero entropy scores, which suggests
that these packages are used in only a single JavaScript file
in the studied JavaScript projects. This result is statically
significant with p-value < 1.789e-05 but the effect size is
negligible (Cliff’s delta estimate: -0.1119). The entropy score
distribution of trivial and non-trivial packages indicates
that trivial and non-trivial packages tend to be used in
different ways, but these two types of packages are essential
in software projects.

A higher percentage of total API calls of JavaScript
files are associated with trivial packages (11.76%
and 7.69% for trivial and non-trivial packages) and
thus these packages are important within these files.
Moreover, entropy distribution of trivial and non-
trivial packages shows both types of packages are
important in software projects. Our results indicate
that trivial packages are consider to be as widely used
as non-trivial package in the projects that depend on
them.

3.3 RQ3: Do trivial packages play a central role at the
ecosystem level?
Motivation: In previous research questions, we found
that trivial packages are important components for the
JavaScript projects that directly depend on them. How-
ever, npm packages, trivial or non-trivial, do not exist in
isolation, they interconnect with other packages and they
form what is known as the npm ecosystem. We believe
that examining how central trivial packages are with the
software ecosystem that they belong to will provide us with
a general understanding of their importance. Thus, in this
question, we seek to understand the centrality of a trivial
package in the dependency network of npm ecosystem,
which consists of all direct and indirect dependencies of the
studied projects.
Approach: To examine the centrality of trivial packages
from the npm ecosystem perspective, we extract all the
dependencies (direct and indirect) for each JavaScript
project in our dataset and construct its dependency network
graph. To extract this package dependency graph, initially,
we install and clone the projects’ dependencies by using

Þ
pkg_X

pkg_Y

pkg_ZProjectA

pkg_Y

pkg_Z

pkg_W

ProjectB

ProjectA
ProjectB

Composite

pkg_X pkg_Y

pkg_Z

ProjectA

pkg_W
ProjectB

Figure 5: Composite Dependency Network.

the npm install command, which install the package
version specified in package.json file. By doing so, all the
direct and indirect dependencies of every project in our
dataset are saved locally in the project’s home directory
in a folder named “node modules”. Then, we use the
npm-ls [35] command to list installed package and their
inter-dependencies in json format. Subsequently, we merge
all the dependency network graphs of all the projects in
our dataset and compile a composite dependency network
at a given point in time. Figure 5 depicts an example of
the process of merging the dependency network graphs of
two JavaScript projects (ProjectA and ProjectB). In our
illustrating example, ProjectA is directly dependent on
pkg X which in turn depends on pkg Y whereas pkg Y
depends on pkg Z. ProjectB has two direct dependencies
and one transitive dependency. Here, in the composite
dependency network, dependency hierarchy is preserved
while accommodating all the dependencies of both projects.
We recursively apply this merging process on all the
dependency network of all the projects in our dataset. As a
result of this merging process, we get a composite package
dependency network that consists of 32,319 connected
packages. Then we analyze the source code of each package
in the constructed dependency network and identify
trivial and non-trivial packages. We find that 16.8% of
32,319 packages in the constructed dependency network
are trivial packages. After that, we use the composite
packages dependency network to examine the centrality
of trivial packages in two complementary measures. First,
we measure the centrality of trivial packages within this
dependency network using the PageRank algorithm [36].
Second, we study the centrality of the trivial packages by
measuring the Technical Bus Factor (TBF) of these packages.
Similar to the idea of social bus factor, which measures the
effect of removal of a developer from a project, the TBF
measures the effect of the removal of a package from a
dependency network [37]. In the following subsection, we
describe how we measure these values for every package in
our constructed graph.

PageRank of External Packages: PageRank score [36] of a node
(packages in our case) indicates the centrality of the node in
a network. The more dependent on a node in a network the
higher is its PageRank score. PageRank has a value range
between 0 and 1. We calculated the PageRank score of every
package (trivial and non-trivial) in our composite package
dependency network. To do so, we use the well-known
network analysis tool called networkx tool [26]. Then, to put
our results in perspective, we compare the PageRank score
of trivial and non-trivial packages.

Non−Trivial

Trivial

1.5e−05 2.0e−05 2.5e−05 3.0e−05
Pagerank in Dependency Network

Figure 6: The distribution of PageRank values for trivial and
non-trivial packages.

Technical Bus Factor (TBF): To understand the effect of
removing one trivial package from the package dependency
network, we calculate TBF, which simulates the removal
of a package from our constructed composite network.
We then evaluate how many other packages, directly or
indirectly dependent on the removed package, are affected.
We calculate what percentage of 32,319 packages, which is
the total number of packages in our dependency network,
are affected by the removal of one package from the
package dependency network. The higher a package’s
Technical Bus Factor (TBF) value; the more central that node
is in the package dependency network.

Result: Figure 6 shows PageRank score distribution for
trivial and non-trivial packages. We notice that the median
PageRank score of trivial packages (1.71e-05) is higher than
that of non-trivial packages (1.61e-05). This result is signifi-
cant (p-value < 2.2e-16) and effect size is small (Cliff’s delta
estimate: 0.1578). This result shows that many packages
are dependent upon trivial packages which makes trivial
packages vital nodes in the ecosystem that they belong to.

Table 7 shows the statistical summary of the distribution
of technical bus factor (TBF) of the trivial and non-trivial
packages. From Table 7, we see that removing a trivial
package from our composite dependency network has
a much larger impact than that of non-trivial package

Table 7: The statistical summary of the distribution of tech-
nical bus factor (TBF) for the trivial and non-trivial packages
in our composite dependency network.

File Type Min. 1st Qu. Median Mean 3rd Qu. Max.

Trivial 0.00 0.0031 0.0155 3.5324 0.1918 36.8174
Non-Trivial 0.00 0.0031 0.0093 1.9480 0.0495 34.9485

Table 8: The top-20 most impactful trivial packages measured by Technical Bus Factor (TBF).

Packages TBF Rank Functionality

inherits 36.82 1 Inherits one constructor’s prototype to another constructor.
isarray 35.43 2 Checks if the object in the argument is an array.
process-nextick-args 34.15 10 Amends the functionality of process.nextTick, which defers a callback function until next eventloop,

by enabling it to accept arguments.
debuglog 34.13 11 Shows degugging information in stderr.
escape-string-regexp 32.26 14 Escapes special characters.
ansi-regex 32.00 18 Matches ANSI escape codes.
object-assign 31.90 22 Assigns values to objects.
strip-ansi 31.89 24 Removes ANSI escape codes from a string.
indexof 31.14 49 Returns index of an object in an array.
foreach 30.87 59 Iterates over the key value pairs of either an array or a dictionary like object.
pinkie-promise 30.54 63 Returns JavaScript promise object
is-object 30.20 64 Checks if the argument is an object.
get-stdin 30.10 65 Get standard input as a string or buffer.
xtend 30.03 68 Extends an object by appending all of the properties from each object in a list.
has-flag 29.77 70 Checks if function argument has a specific flag.
has-color 29.67 73 Detects whether a terminal supports color.
once 29.65 74 Restricts a function to be called only once.
graceful-readlink 29.02 79 Returns a file’s symbolic link.
number-is-nan 28.91 82 Checks whether the value in the argument is undefined and its type is Number

removal. We see that the median TBF values for trivial
packages is 0.0155 while it is 0.0093 for non-trivial packages.
We observe that this result is a statistically significant with
p-value < 2.2e-16 and small effect size (Cliff’s delta estimate:
0.1525).

To investigate the characteristics of trivial packages that
have the highest TBF values in our dependency graph, the
first two authors manually examine the top twenty trivial
packages. Table 8 shows the names, TBF values, their ranks
in dependency network based on TBF and the description
of the functionalities of the top trivial packages. We rank
these packages in dependency network based on their TBF
where package with highest TBF is ranked 1 and rank
increases with decreasing TBF. From Table 8, we see that
these trivial packages have TBF values ranges between 36.82
and 28.91, which means that trivial packages in the list based
on the TBF value can affect at least approximately 29% of all
packages in the dependency network when any one of these
is removed.

Based on our manual examination of these trivial pack-
ages, we found that these packages provide popular utility
functions, enhancement of JavaScript standard functionali-
ties and cross-platform compatibility features.

First, the examined trivial packages provide some
popular utility functions like checking objects e.g. has-
flag, has-color, is-object, number-is-nan; string opera-
tions e.g. ansi-regex, strip-ansi; and object manipula-
tion e.g. xtend, foreach. The second group of the ex-
amined trivial packages is used to enhance existing na-
tive functionality of the JavaScript engine. For example,
process-nextick-args [38] extends the capability of
process-nextick by enabling this function to accept argu-
ments. Finally, we found some trivial packages provide
functionalities that help developers to deal with the cross-
platform compatibility. Since JavaScript code can be run
on different types and versions of web browsers, these
packages provide backward and forward compatibility. For
example, isarray package [39] is a well-known package
and in the dependency network it is ranked 2nd based

on it’s TBF. It provides same functionality like the native
Array.isArray. Array.isArray supports browsers with newer
version, e.g. IE9+, Chrome 5+, Firefox 4+, Opera 10.5+ and
Safari 5+. However, as this function is not supported in
older versions of browsers, isarray package is widely used
because it supports older browser versions that are not
compatible with ECMAScript 5 or later. These types of pack-
ages that provide cross-platform compatibility are known
as ponyfills and polyfills [40]. Whereas polyfills are prone to
unexpected bugs as these pollute the global scope, ponyfills
is the smarter alternative which exports functionalities as
a module without exploiting global scope. 25% of top 20
trivial packages e.g isarray, debuglog, object-assign, pinkie-
promise, number-is-nan, are ponyfills. Furthermore, 37.97%
of all ponyfill solutions in npm are trivial packages [40], [41].
From this analysis we see that trivial packages are often the
byproduct of compatibility ensuring efforts.

Additionally, this analysis of the top 20 trivial
packages revealed that some developers have a proclivity
of publishing trivial packages. For example, Sindre
Sorhus [42], a famous open-sourcerer, who created
Yeoman [43] and Awesome Project [44], collaborated 7 of
the top 20 trivial packages. We examined all of his 1,148
packages in npm and surprisingly 55.14% of his published
packages are trivial packages.

Trivial packages are vital nodes in the package de-
pendency network (i.e., ecosystem). In fact, our results
show that 16.19% of trivial packages and only 9.27%
of non-trivial packages have a TBF value grater than
15%. These results indicate that trivial packages play
a central role in the npm ecosystem, and in some cases
removing a trivial package can at least approximately
affect 29% of all packages in the dependency network.

4 DISCUSSION
In this section, we first discuss our findings concerning the
centrality of trivial package overtime in software projects.
Then, we discussed the implications of our findings.

0

20

40

60

80

100

Intro 10% 20% 30% 40% 50% 60% 70% 80% 90% Cur.

Segmentations

%
 o

f T
riv

ia
l D

ep
en

de
nt

 F
ile

s

Figure 7: The distribution of the percentage of trivial depen-
dent files in all the studied projects based on TDDT segmen-
tations. Dotted horizontal line present overall median.

4.1 Re-examining the Role of Trivial Packages Over-
time
Our results were presented on a specific snapshot of the
projects and their dependencies. Hence, in this subsection,
we further investigate the validity of our findings over time.

In research questions 1 and 2, we focus on studying the
centrality of trivial packages from the usage perspective.
To do so, we examine the current snapshot of the studied
projects2. Now, we want to examine the role of trivial
packages in the studied projects overtime. We believe that
examining usage of trivial package over time will provide
us with a general overview of the usage of trivial packages
compare to only examine the current snapshot. Also, an in-
crement in the number of trivial dependent files overtime in
a software project suggests these packages’ importance and
developer’s reliance on these packages whereas decrement
suggests otherwise.

First, we examine the evolution of the number of triv-
ial dependent files over their development timespan of a
project. Second, we analyze the evolution of percentage of
trivial package API calls in trivial dependent files over the
development timespan of software projects. To identify the
development period in which a project has some trivial
package dependency, we need to know the commit that
introduced the first trivial package in a project. This commit
is either the first commit in a software project or before this
commit the project was non-trivial dependent. Since all the
projects in our dataset use git as their source control system,
we iterate each commit starting from the initial commit of
a software project to check if the commit is adding any
trivial package into a JavaScript file. When we encounter
such commit, we break the iteration and mark and register
that commit as a trivial introducing commit for that software
project.

Trivial dependent projects in our dataset start being triv-
ial dependent from the trivial introductory commit. We con-
sider the development timespan of a project, which ranges
from first trivial introductory commit till the latest commit
as trivial dependent development timespan (TDDT). We
segment this TDDT into 10 equal parts by the means of the

2. In our study, the current snapshot of a project refers to the date
when we collected project in our dataset.

total number of commits in this period. For each project,
we count the total number of commits in its TDDT and
take a snapshot at each 10th percentile commit. Therefore,
this segmentation process provides 11 snapshot points for
each project, which are at: first trivial introductory commit,
10% commit, 20% commit, 30% commit, 40% commit, 50%
commit, 60% commit, 70% commit, 80% commit, 90% com-
mit and latest commit. As module growth is a predicted
phenomenon in the software development lifecycle [45],
[46], [47], we measure the percentage of trivial dependent
files to all files across a project’s TDDT not the raw number.

Figure 7 shows box-plots of the percentage of the num-
ber of trivial dependent files in all the studied projects in
our dataset for the 11 snapshot points in the projects’ TDDT.
Here, we observe that the percentage of the number of
trivial dependent files remain almost constant over time
with approximately median percent of trivial dependent
files equal to 20%. These results reflect the centrality of and
developer’s reliance on these trivial packages in software
projects.

We further investigate the percentage of trivial packages’
API calls in trivial dependent files throughout the concerned
project’s TDDT. Table 9 shows the percentage of package’s
API calls distribution in these files for each project across
its TDDT. Once again, to put our analysis in perspective,
for every TDDT segment, the table shows the percentage of
trivial packages (TP) and non-trivial packages’s API calls.

From Table 9, we observe that the percentage of triv-
ial package’s (TP) API calls is higher than that of non-
trivial package’s (NTP) API call at each snapshot point in
the projects development timespan. For example, at 30%’s
TDDT, we see that trivial packages’ API calls is higher
(with mean=30.5 and median = 16.7) that the percentage
of API calls for the non-trivial packages (with mean = 16.3
and median = 9.1). We see similar results at the late of
the development lifespan of the studied projects. As the
table shows at 90%’s TDDT, we see that with 30.3/16.7
mean/median of API calls for trivial packages is higher than
the ones for the non-trivial packages (15.8/8.3).

To examine whether the results are statistically signifi-
cant, we perform the Wilcoxon rank-sum test and the Cliff’s
Delta effect size test on the data from each segment. The
last two rows of Table 9 shows p-value and the effect size
between the percentage of trivial and non-trivial packages’
API calls for every TDDT. From Table 9, we see that these
results are statistically significant and have small effect sizes
in all the snapshot points. For example, at 30% TDDT,
we found that the different between the percentage of the
API calls for trivial and non-trivial packages are statically
significant (p-value = <2.2e-16) and the effect size is small.
This analysis shows that the percentage of API calls for triv-
ial packages within trivial dependent files remains higher
throughout the development timespan of the concerned
software projects.

4.2 Developers’ Perspective
Since our analysis has been quantitative in nature, in this
section we want to triangulate our findings and under-
stand the developers’ perspective of our findings. Thus,
we conducted a user study where we sent a summary
of our findings and a version of this paper to JavaScript

Table 9: The statistical summary of the distribution of external package API call percentage in JavaScript files throughout
project’s development lifespan. The table shows the distribution for trivial packages (TP) and non-trivial packages (NPT).

Segments Intro 10% 20% 30% 40% 50% 60% 70% 80% 90%

TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP

Min. 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Median 16.7 9.1 16.7 9.1 16.7 9.1 16.7 9.1 16.7 9.1 16.7 8.6 16.7 8.7 16.7 8.3 16.7 8.3 16.7 8.3
Mean 30.1 16.4 30.4 16.5 30.0 16.4 30.5 16.3 30.2 16.3 30.7 15.9 30.7 16.0 30.8 15.9 30.8 15.9 30.3 15.8
Max. 100 96.6 100 96.5 100 96.6 100 96.8 100 96.9 100 97.1 100 96.9 100 97.3 100 97.5 100 97.6

p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
Cliff’s d 0.2434 0.2540 0.2453 0.2626 0.2589 0.2641 0.2635 0.2661 0.2760 0.2543

developers. The email’s main goal was to inquire about the
developers’ thoughts about our findings (e.g., anything that
is surprising, interesting, obvious, etc.).

We received five responses (P1 to P5), and we carefully
read the responses. We observe that all the surveyed de-
velopers found our results to be interesting. For example,
developers P1 stated that “I did not expect that the trivial
packages play a key role in the central parts of the projects and
the npm ecosystem.” and P4 stated “This is kind of crazy to
me (good kind of crazy), generally as software engineers, we will
depend on a package because it accomplishes something difficult
to do and we don’t want to put in the effort and maintain it
ourselves.” Interestingly, one developer P2 pointed out the
importance of our study and said that “I am glad that the
study raises awareness for the importance of these trivial packages,
since they might sometimes be overlooked from a quality assurance
standpoint because they seem small and uncomplicated.”

Some of the developers in our study also pointed out
some root causes of these trivial packages. For example,
developer P2 stated, “this study shows solid proof on how
not having a proper standard library in a language like JS can
force users to adopt alternative strategies (depending on many
trivial packages) that might cause other issues in the long term.”
Another developer P4 highlighted the direct implication of
this study to ecosystem maintainers and project developers
and stated “You brought up a good point about how ecosystem
maintainers should specify that a dependency is trivial. Of course
this is good advice now that you have done this study and
presented your findings; otherwise software engineers don’t think
this way. When I am evaluating whether or not to include a
dependency, the fact that it’s trivial is not something I consider.
I do consider things like the popularity in the community (this
gives a measure of how proven it is), and how active of a project
is it (is it a one shot release? is it actively maintained?).”

4.3 Implications of Our Findings
Our study has a number of implications for trivial package
developers, for developers of the projects that depend on
trivial packages, and for the npm ecosystem.

Implications for developers of trivial packages: In our
study, we found that trivial packages play a central role in
both, the JavaScript projects that depend on them and for
the npm ecosystem. Since prior work showed that trivial
packages also introduce some negative side effects (e.g.,
they may lack proper tests and may introduce significant
dependency overhead [3]), we recommend that trivial pack-
age developers put more effort to keep their trivial packages
well-maintained and up-to-date. Although developers may
think that a trivial package need not much maintenance
after its creation, what our study shows is quite the contrary.

Additionally, developers should be careful when publishing
these trivial packages since our findings show that they can
be heavily dependent on and can cause added complexity
to the ecosystem.

Implications for developers of the projects that depend
on trivial packages: First of all, our main implication for the
JavaScript developers who depend on trivial packages is to
not overlook the importance of such packages. Our study
shows that, in many cases, they are critical to the developers’
projects and to many of the other projects that depend on
them. Hence, proper updating practices should be followed,
even for these trivial packages. Also, developers should
carefully examine such packages before depending on them
since they may prove problematic if one depends on a
poorly developed or maintained trivial package.

Moreover, our results show that JavaScript projects de-
pend on trivial packages throughout the entire lifespan of
the projects, which means that they are not just used early
on in the project. This finding has two main implications.
First, developers should apply a systematic approach when
selecting an external package that they want to add and
make sure to consider whether the package is trivial. Sec-
ond, developers should consider some code enhancement
techniques to limit the use of trivial packages. For example,
developers should use refactoring and migration techniques
to reduce dependencies (even dependencies on trivial pack-
ages) since they pose potential points of failure for their
JavaScript project. The case can be made that eliminating a
dependency on a trivial package may be easier to do than
on non-trivial packages.

Implications for the npm ecosystem: Our results show
trivial packages play a central role in the npm ecosystems
and in some cases removing one trivial package can affect
approximately 29% of the packages in the ecosystems. We
believe that ecosystem maintainers should treat trivial pack-
ages with more care and perhaps provide some guidelines
for their inclusion in the ecosystem. For example, limits
may be put on the amount of dependencies that one trivial
package may have. One way to address this issue is to
introduce a JavaScript standard library that encompasses
many of these trivial packages. The need for such a richer
standard library is clearly evident from our finding that
many of the trivial packages provide important and es-
sential functionality that would generally be provided in
a standard library of other languages.

In addition, developers should give as much attention
to trivial packages as they do to larger and more complex
packages. Also, ecosystem maintainers should provide a
mechanism to warn developers about these trivial packages.
For example, developers should be shown the size and

complexity of the trivial packages during the process when
developers are looking at a npm package to use.

5 RELATED WORK
In this section, we discuss work related to our study, which
is mainly related to software ecosystems. The software
projects that belong to the same software ecosystem has
been a research interest lately. Several studies examine
software ecosystems to understand their characteristics and
evolution (e.g., [48], [49], [50], [51], [52], [53]).

Recently, Abdalkareem et al. [3] studied an emerging
code reuse practice in the form of small packages, trivial
packages, in the npm ecosystem. Abdalkareem et al. [3]
studied various aspects regarding trivial packages. They
first defined the size and complexity of these packages and
we adopt this definition in our study. Whereas their study
was conducted upon understanding why developers use
trivial packages, our study examines the importance of these
trivial packages in software projects.

Several other studies examined direct and transitive de-
pendencies of software projects. Wittern et al. [54] examined
packages in npm ecosystem and they observed that 32.5%
of the packages have 6 or more dependencies. Moreover,
27.5% of the packages in npm are core packages as they
are largely dependent on. Fard et al. [55], in their study,
evaluated changeability in npm projects and they showed
that the average number of dependencies in these projects
is 6 and the number is always in the growing trend. Kikas et
al. analyzed the dependency network structure and evo-
lution of the JavaScript, Ruby, and Rust ecosystems and
showed that the number of transitive dependencies is 10
times higher than the number of direct dependencies and
this scenario is growing exponentially [56]. Recently, Zim-
mermann et al. [57] systematically examine dependencies
between packages, the maintainers responsible for packages
in the npm while focusing on security issues. Their results
show that individual packages could impact large parts of
the npm ecosystem. They also reported that a very small
number of developers are responsible for a large number
of npm packages. In our study, we also see that direct de-
pendencies are only the tip of the iceberg, whereas indirect
dependencies make up the largest portion of a package
dependency network. In our study, we have used the idea of
the Technical Bus Factor where we measure the percentage
of the ecosystems that may impact by removing one trivial
package. In our analyzed dataset of software projects, we
found 10,507 distinct packages as direct dependencies to
these projects whereas the package dependency network,
which has direct and transitive dependencies of these soft-
ware projects, has 32,319 packages.

Researchers have also investigated developers’ ratio-
nale behind selecting package for his/her software project.
Surprisingly, Haenni et al. found that developers gener-
ally do not apply any logical reasoning while selecting
the packages, they just use them to accomplish their task.
Abdalkareem et al. [3] found that developers have biased
perception about trivial packages, developers think that
these packages are well tested. Moreover, after including
third-party packages, developers are often too reluctant to
updates their dependencies, which improves functionalities
and fixes security issues or bugs, of these packages. Kula et

al. [58] observed that 81.5% of their studied projects have
outdated dependencies, although these projects heavily de-
pend on external packages. Their interviewing of devel-
opers reveals that they are often unaware of the security
vulnerabilities of underlying dependencies and therefore
they perceive updating dependencies not a necessity but
additional work. The study of Wittern et al. [54] shows us
that the package version number is not a good predictor
of a package’s maturity. Therefore, to assist developers in
updating dependencies, evaluating four software packaging
ecosystems (Cargo, npm, Packagist and Rubygems), De-
can et al. [59] proposed an evaluation based on the “wisdom
of the crowds” principle to select appropriate semantic
versioning constraints for their dependencies. These types
of ecosystem-wide studies help to clarify various general
misconceptions and mitigate bad practices in ecosystems.

Other studies examine the API usage of external pack-
ages. Mileva et al. [60] studied API usage patterns of external
libraries to examine the popularity of external package
APIs’. They used this popularity metric to determine if a
package is successful or not. In addition, Holmes et al. [29]
quantitatively analyzed how APIs are used. They consider
the frequency of API use as popularity and importance of
that API. Similar to these studies, we determine the impor-
tance of an external package by analyzing the percentage of
its API calls in the files that depend upon those packages.

Overall, our study examines software projects that de-
pend on at least one trivial package from the npm ecosys-
tem. So, our study is focused on the characteristics of
software projects that adhere to the same environment. This
categorization helps us understand the ecosystem better and
helps adhere to good practices and mitigate bad practices
ecosystem-wide.

6 THREATS TO VALIDITY
In this section, we discuss the threats of validity related to
our study.

6.1 Construct validity
Construct validity considers the relationship between the-
ory and observation, in case the measured variables do not
measure the actual factors.

In our study, we used several in-house and state-of-the-
art tools and techniques. First, to identify the actually used
packages in the JavaScript projects in our dataset, we used
the depchecker [20] tool to extract file-level dependencies.
Our results may be limited by the accuracy of this tool. To
validate the accuracy of the depchecker tool. We run the
tool on randomly selected five JavaScript projects from our
dataset. Then, the first two authors manually examine the
results of the depchecker tool thorough manually examin-
ing the output of depchecker tool. We find that in all the
examined projects the tool correctly identified and reported
the actually used packages.

To calculate the degree centrality of trivial and non-
trivial dependent files in each project in our dataset, we gen-
erate a file-level dependency graph representation of files in
every project in our dataset. To do so, we use the madge
tool to generate file-level dependency graphs [25]. Hence,
our analysis is limited by the accuracy of the madge tool.
To validate the accuracy of the madge tool, we performed

an experiment to examine the precision of the madge tool.
To do so, we selected five JavaScript projects from our
dataset, and then we ran the madge tool on them. Then the
first two authors manually examine the generated file-level
dependency graph for every project and trace the generated
links from the file-level dependency graph to the projects’
source code. Table 10 shows the distribution of the number
of files in the manually examined JavaScript projects. Our
results show that all the examined links in the generated
file-level dependency graphs exist in the source code of the
examined JavaScript projects with a precision of 100% since
we only have the cases that the madge tool detects.

Table 10: The distribution of the number of files in the five
manually examined projects.

Min. 1st Qu. Median Mean 3rd Qu. Max.

15.0 16.0 23.0 27.6 38.0 46.0

In addition, to examine whether trivial packages are
used in central parts of JavaScript projects, we calculated
the degree centrality score for each file of a project in our
dataset. However, degree centrality is not the only method
to measure centralities. Thus, using other methods of cal-
culating centralities (e.g., betweenness centrality [61]) may
provide different results.

To answer the second research question and to extract
and measure all the occurrences of external package API
calls in JavaScript files, we use the Understand tool [19] that
is a commonly used source analysis tool in both industry
and research [30], [31], [32]. Hence, we are limited by the
accuracy of the Understand tool. To validate the accuracy
of the Understand tool, we performed two complementary
experiments. We first performed an experiment to identify
the type of API calls that the Understand tool can detect. To
do so, we collect a list of possible ways of making an API call
in the JavaScript programming language. We collected ten
different types of API calls in JavaScript of which only eight
can be detected via static source code analysis (Appendix A
shows the list of API call examples in JavaScript). After that,
we run the Understand tool on all the collected API calls in
our examples. Then, we manually examine the result of the
Understand tool to see whether the Understand tool detects
all of the collected API calls or not. We determine that it is
sufficient to run the Understand tool on each type of API
call once, because our goal is to validate the ability of the
tool to detect different API call types in Javascript. Since
detecting an API call once means that it can be detected all
the time, we find it sufficient to perform this detection on
one instance of each API call type.

Our result shows that the Understand tool is able to
detect all eight of the target API calls. The only two ex-
pectations that the tool does not detect are API calls that
are associated with the function eval and constructor. In
JavaScrip, the functions eval and constructor have a string
argument, which is parsed and executed at runtime. These
two cases can only be detected at runtime and cannot be
detected via static source code analysis.

Second, we performed an experiment to evaluate the
accuracy of the Understand tool in detecting API calls. To
do so, we randomly selected five JavaScript projects from
our dataset and ran the Understand tool. Then, for each

JavaScript file in the selected projects, we extracted the API
calls. After that the first two authors manually examine the
API calls in the source code of each file. Our results show
that in all the cases that we examine the Understand tool is
able to detect the API calls. It is also important to notice that
in all the examined projects, we did not find any use of API
call through a string argument (e.g., eval function).

We also use the networkx [26] tool to generate the
dependency graph of files of every JavaScript project. Again,
our graph dependency network analysis may influence the
accuracy of the generated graph. To alleviate these issues,
we manually examine the generated call graphs for five
projects in our dataset and found that these graphs represent
the dependency structure between files in these projects.

To answer our second research question, we only cap-
tured the direct usage of external packages in our static
code analysis. For example, a package “X” is imported
(e.g require statement) and assigned it to a variable “a”
and later “a” is assigned to another variable “b”. We only
tracked the external package usage with variable “a” and
did not track “b”. We decide to examine the direct usage
of these packages for two main reasons. First, this type of
transitive assignment of a variable is very rare in JavaScript
code as other work shows [62]. This is why we believe that
this shortcoming does not significantly impact our findings.
Second, if we miss some of the usages of external packages,
we missed both trivial and non-trivial packages. As we
contrast trivial and non-trivial package usage, this effect will
not affect the result of the comparison.

In our analysis, we resort to using the npm-pack com-
mand [17] to resolve the semantic version and download
the appropriate ‘tar’ file that contains the source code of
the package for each dependency-version pair at the time
of our analysis. Thus, dependencies could be different if the
analysis is done at a later time.

In our selection process of the JavaScript projects that
are hosted on GitHub, we filtered out npm packages that
may also exist on GitHub [15]. To do so, we relied on the
metadata provided by the GHTorrent dataset [14] to cross-
check the list of URLs. Thus, our selection of JavaScript
projects heavily depends on the correctness of the projects
URLs listed in the GHTorrent dataset. To answer RQ3, we
constructed a dependency network graph of all the direct
and indirect dependencies packages used in our studied
projects. This dependency network graph may not represent
the entire packages in the npm ecosystems.

6.2 External validity
In this subsection, we discuss the generalizability of our
findings. Our dataset only consists of JavaScript projects,
which use npm as their package manager, hence our find-
ings may not hold for projects written in other programming
languages or use different package manager. However, npm
mainly supports JavaScript projects and it is one of the
largest and most rapidly growing software ecosystems [63].
In addition, our dataset that is used in our study present
only open source project hosted on GitHub that may do
not reflect proprietary projects. Also, our initial dataset
size is 15,254 JavaScript projects that use the npm package
manager, which may not represent the whole population of
JavaScript projects.

7 CONCLUSION
Code reuse in the form of small/trivial packages became
prevalent in software development [3], [64]. We observe
that these trivial packages, being small in size and com-
plexity, provide various functionalities ranging from string
manipulation to security. Thus it is important to understand
whether these packages are trivially used or their usage in
software projects transcends their triviality. In this paper,
we empirically examine trivial packages relative importance
and their use cases from two point of views; from the
projects usage and ecosystem usage. to do so, we analyze a
large dataset of open-source JavaScript projects that depend
on at least on trivial package.

We observe that trivial packages are used in important
part of the examined software projects compared to non-
trivial packages. Our results show that trivial dependent
files have on median 0.022 degree centrality value while it
is 0.001 for non-trivial dependent files. We also, found that
trivial packages have a higher percentage of total API calls
of JavaScript files (11.76% and 7.69% for trivial and non-
trivial packages). As for the ecosystem usage, we examine
the relative importance of trivial packages in the ecosystem
they belong to where we analyze the dependency graph of
the direct and transitive dependencies of software projects
in our dataset. We observe that trivial packages are highly
dependent upon packages in the npm ecosystem, which
makes trivial packages salient in the ecosystem. In some
case removing one trivial package from the npm ecosystem
could affect up to 29% of the whole npm ecosystem.

We believe that there are several possible directions for
future work based on our findings. First, we would like to
develop an advanced technique to detect and evaluate the
quality of trivial package in an ecosystem since our results
reveal that trivial packages play a key role in the ecosys-
tem. Second, we want to devise an automatic approach to
identify trivial package so developers can be aware that
the packages that they use are trivial. Finally, since our
study examines only the importance of JavaScript packages,
we would like to investigate the notion of triviality in
other/more software ecosystems.

REFERENCES
[1] S. Wagner and E. Murphy-Hill, Factors That Influence Productivity:

A Checklist, Berkeley, CA, 2019”, publisher=”Apress, pp. 69–84.
[2] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd, M. Phillips,

C. Winter, A. Knight, E. Smith, and M. Jorde, “What predicts
software developers’ productivity?” IEEE Transactions on Software
Engineering, pp. 1–1, 2019.

[3] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study
on npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. ACM, 2017, pp. 385–
395.

[4] R. Cox, “Surviving software dependencies,” Commun. ACM,
vol. 62, no. 9, pp. 36–43, Aug. 2019.

[5] W. C. Lim, “Effects of reuse on quality, productivity, and eco-
nomics,” IEEE Software, vol. 11, pp. 23–30, 1994.

[6] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto,
and A. Ihara, “Towards smoother library migrations: A look
at vulnerable dependency migrations at function level for npm
javascript packages,” in Proceedings of the 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018, pp.
559–563.

[7] A. Decan, T. Mens, and E. Constantinou, “On the impact of
security vulnerabilities in the npm package dependency network,”
in 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), May 2018, pp. 181–191.

[8] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code
come from and where does it go? - integrated code history tracker
for open source systems -,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 331–341. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337263

[9] F. Macdomald, “A programmer almost broke the internet
last week by deleting 11 lines of code - sciencealert,”
http://www.sciencealert.com/how-a-programmer-almost-broke-
the-internet-by-deleting-11-lines-of-code, March 2016, (accessed
on 06/03/2016).

[10] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “On the impact
of micro-packages: An empirical study of the npm javascript
ecosystem,” 2017.

[11] npm search, “escape-string-regexp - npm,” https://www.npmjs.
com/package/escape-string-regexp, October 2019, (accessed on
10/02/2019).

[12] M. A. R. Chowdhury, R. Abdalkareem, E. Shihab, and B. Adams,
“On the Untriviality of Trivial Packages: An Empirical Study
of npm JavaScript Packages,” Dec. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.4019236

[13] “The ghtorrent project,” http://ghtorrent.org/, (Accessed on
02/18/2019).

[14] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
ghtorrent: Github data on demand,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
ACM, 2014, p. 384387.

[15] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona,
“On the diversity of software package popularity metrics: An
empirical study of npm,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering, ser. SANER 2019,
2019, pp. 589–593.

[16] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining github,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. ACM, 2014, pp. 92–101.

[17] “npm-pack — npm documentation,” https://docs.npmjs.com/
cli/pack.html, (Accessed on 02/17/2019).

[18] “npm-registry — npm documentation,” https://docs.npmjs.com/
misc/registry, (Accessed on 02/17/2019).

[19] “UnderstandTMstatic code analysis tool,” https://scitools.com/,
(Accessed on 02/17/2019).

[20] J. Li and D. Lukic, “depcheck - npm,” https://www.npmjs.com/
package/depcheck, (Accessed on 02/17/2019).

[21] S. P. Borgatti, “Centrality and network flow,” Social networks,
vol. 27, no. 1, pp. 55–71, 2005.

[22] S. White and P. Smyth, “Algorithms for estimating relative im-
portance in networks,” in Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’03. ACM, 2003, pp. 266–275.

[23] F. Cadini, E. Zio, and C.-A. Petrescu, “Using centrality measures to
rank the importance of the components of a complex network in-
frastructure,” in Proceedings of the Critical Information Infrastructure
Security. Springer Berlin Heidelberg, 2009, pp. 155–167.

[24] X. Qi, E. Fuller, Q. Wu, Y. Wu, and C.-Q. Zhang, “Laplacian
centrality: A new centrality measure for weighted networks,”
Information Sciences, vol. 194, pp. 240 – 253, 2012.

[25] “Madge- developer tool for generating a visual graph of
your module dependencies,” https://www.npmjs.com/package/
madge, (Accessed on 02/17/2019).

[26] “Networkx - network graph analysis,” https://networkx.github.
io/, (Accessed on 02/17/2019).

[27] “wilcox.test function — r documentation,” https://www.
rdocumentation.org/packages/stats/versions/3.5.1/topics/
wilcox.test, (Accessed on 02/17/2019).

[28] “cliff.delta function — r documentation,” https://www.
rdocumentation.org/packages/effsize/versions/0.6.4/topics/
cliff.delta, (Accessed on 02/17/2019).

[29] R. Holmes and R. J. Walker, “Informing eclipse api production
and consumption,” in Proceedings of the 2007 OOPSLA Workshop on
Eclipse Technology eXchange, ser. eclipse ’07. ACM, 2007, pp. 70–74.

[30] M. T. Rahman, P. C. Rigby, and E. Shihab, “The modular and
feature toggle architectures of google chrome,” Empirical Software
Engineering, vol. 24, no. 2, p. 826853, Apr. 2019.

[31] M. Castelluccio, L. An, and F. Khomh, “An empirical study of
patch uplift in rapid release development pipelines,” Empirical
Software Engineering, vol. 24, no. 5, pp. 3008–3044, 2019.

[32] M. Ahasanuzzaman, S. Hassan, and A. E. Hassan, “Studying ad
library integration strategies of top free-to-download apps,” IEEE
Transactions on Software Engineering, pp. 1–1, 2020.

[33] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 2009 IEEE 31st International Con-
ference on Software Engineering, 2009, pp. 78–88.

[34] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time
quality assurance,” IEEE Transactions on Software Engineering,
vol. 39, no. 6, pp. 757–773, June 2013.

[35] “npm-ls | npm documentation,” https://docs.npmjs.com/cli/ls.
html, (Accessed on 04/21/2019).

[36] “Pagerank - wikipedia,” https://en.wikipedia.org/wiki/
PageRank, (Accessed on 02/17/2019).

[37] T. Mens, “An ecosystemic and socio-technical view on software
maintenance and evolution,” in Proceedings of the 2016 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
vol. 00. IEEE, 2016, pp. 1–8.

[38] “process-nextick-args - npm,” https://www.npmjs.com/
package/process-nextick-args, (Accessed on 07/24/2019).

[39] “isarray - npm,” https://www.npmjs.com/package/isarray, (Ac-
cessed on 07/24/2019).

[40] “sindresorhus/ponyfill: like polyfill but with pony pure-
ness,” https://github.com/sindresorhus/ponyfill, (Accessed on
07/05/2019).

[41] “npms,” https://npms.io/search?q=keywords%3Aponyfill, (Ac-
cessed on 07/05/2019).

[42] “npm,” https://www.npmjs.com/∼sindresorhus, (Accessed on
07/05/2019).

[43] “The web’s scaffolding tool for modern webapps — yeoman,”
https://yeoman.io/, (Accessed on 07/05/2019).

[44] “sindresorhus/awesome: awesome lists about all kinds of
interesting topics,” https://github.com/sindresorhus/awesome#
readme, (Accessed on 07/05/2019).

[45] M. M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076,
1980.

[46] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding
of software evolution: An empirical study on open source soft-
ware,” in 2009 IEEE International Conference on Software Mainte-
nance, ser. ICSME 09, Sep. 2009, pp. 51–60.

[47] Godfrey and Qiang Tu, “Evolution in open source software: a
case study,” in Proceedings 2000 International Conference on Software
Maintenance, ser. ICSME 2000. IEEE, Oct 2000, pp. 131–142.

[48] R. Bloemen, C. Amrit, S. Kuhlmann, and G. Ordóñez Matamoros,
“Gentoo package dependencies over time,” in Proceedings of the
11th Working Conference on Mining Software Repositories, ser. MSR
2014. ACM, 2014, pp. 404–407.

[49] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella,
“The evolution of project inter-dependencies in a software ecosys-
tem: The case of apache,” in Proceedings of the 2013 IEEE Inter-
national Conference on Software Maintenance, ser. ICSM ’13. IEEE
Computer Society, 2013, pp. 280–289.

[50] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When github
meets cran: An analysis of inter-repository package dependency
problems,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1. IEEE
Computer Society, 2016, pp. 493–504.

[51] K. Manikas, “Revisiting software ecosystems research: A longitu-
dinal literature study,” Journal of Systems and Software.

[52] D. M. German, B. Adams, and A. E. Hassan, “The evolution of
the r software ecosystem,” in Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE, 2013,
pp. 243–252.

[53] J. ”Kabbedijk and S. Jansen, “”steering insight: An exploration of
the ruby software ecosystem”,” in ”Software Business”. ”Springer
Berlin Heidelberg”, ”2011”, pp. ”44–55”.

[54] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics
of the javascript package ecosystem,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR), May
2016, pp. 351–361.

[55] A. M. Fard and A. Mesbah, “Javascript: The (un)covered parts,”
2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), pp. 230–240, 2017.

[56] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and
evolution of package dependency networks,” in Proceedings of the
14th International Conference on Mining Software Repositories, ser.
MSR ’17. IEEE Press, 2017, pp. 102–112.

[57] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
world with high risks: A study of security threats in the npm
ecosystem,” in Proceedings of the 28th USENIX Conference on Secu-
rity Symposium, ser. SEC19. USA: USENIX Association, 2019, p.
9951010.

[58] R. G. Kula, D. M. Germán, A. Ouni, T. Ishio, and K. Inoue,
“Do developers update their library dependencies? - an empirical
study on the impact of security advisories on library migration,”
Empirical Software Engineering, vol. 23, no. 1, pp. 384–417, 2018.
[Online]. Available: https://doi.org/10.1007/s10664-017-9521-5

[59] A. Decan and T. Mens, “What do package dependencies tell us
about semantic versioning?” IEEE Transactions on Software Engi-
neering, pp. 1–1, 2019.

[60] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining api popularity,”
in Proceedings of the 5th International Academic and Industrial Confer-
ence on Testing - Practice and Research Techniques, ser. TAIC PART’10.
Springer-Verlag, 2010, pp. 173–180.

[61] L. C. Freeman, “A set of measures of centrality based on between-
ness,” Sociometry, pp. 35–41, 1977.

[62] A. Feldthaus, M. Schfer, M. Sridharan, J. Dolby, and F. Tip,
“Efficient construction of approximate call graphs for javascript
ide services,” in Proceedings of the 2013 35th International Conference
on Software Engineering (ICSE). ACM, 2013, pp. 752–761.

[63] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison
of dependency network evolution in seven software packaging
ecosystems,” Empirical Softw. Engg., vol. 24, no. 1, pp. 381–416,
2019.

[64] R. Abdalkareem, “Reasons and drawbacks of using trivial npm
packages: The developers’ perspective,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ser. ES-
EC/FSE 2017. ACM, 2017, pp. 1062–1064.

Md Atique Reza Chowdhury is a M.Sc. in De-
partment of Computer Science and Software
Engineering at Concordia University, Montreal.
His research interests include mining software
repositories, and analysis of software ecosys-
tems.

Rabe Abdalkareem is a postdoctoral fellow
in the Software Analysis and Intelligence Lab
(SAIL) at Queens University, Canada. He re-
ceived his Ph.D. in Computer Science and Soft-
ware Engineering from Concordia University,
Montreal, Canada. His research investigates
how the adoption of crowdsourced knowledge
affects software development and maintenance.
Abdalkareem received his masters in applied
Computer Science from Concordia University.
His work has been published at premier venues

such as FSE, MSR, ICSME and MobileSoft, as well as in major jour-
nals such as TSE, IEEE Software, EMSE and IST. Contact him at
abdrabe@gmail.com; https://rabeabdalkareem.github.io/.

Emad Shihab is an associate professor in the
Department of Computer Science and Soft-
ware Engineering at Concordia University. He re-
ceived his PhD from Queens University. Dr. Shi-
habs research interests are in Software Quality
Assurance, Mining Software Repositories, Tech-
nical Debt, Mobile Applications and Software Ar-
chitecture. He worked as a software research in-
tern at Research In Motion in Waterloo, Ontario
and Microsoft Research in Redmond, Washing-
ton. Dr. Shihab is a member of the IEEE and

ACM. More information can be found at http://das.encs.concordia.ca.

Bram Adams is an associate professor at Poly-
technique Montreal, where he heads the Lab on
Maintenance, Construction, and Intelligence of
Software. His research interests include release
engineering in general, as well as software inte-
gration, software build systems, and infrastruc-
ture as code. Adams obtained his PhD in com-
puter science engineering from Ghent Univer-
sity. He is a steering committee member of the
International Workshop on Release Engineering
(RELENG) and program co-chair of SCAM 2013,

SANER 2015, ICSME 2016 and MSR 2019.

APPENDIX A
LIST OF TEN DIFFERENT API CALLS IN JAVASCRIPT
In this appendix, we present a list of ten possible ways
of making an API call in the JavaScript programming
language. We collected ten different types of API calls in
JavaScript, of which only eight can be detected via the
Understand tool.

A.1 Function declaration (Detected)

// function_declaration.js

function hello() {
console.log(’hello’)
}

hello()

A.2 Function expression (Detected)

// function_expression.js
var hello = function() {
console.log(’hello’)
}

hello()

A.3 Function as constructor (Not detected)

// function_constructor.js
var hello = new Function("console.log(’hello’)")

hello()

A.4 Function in eval (Not detected)

// eval.js

eval("function hello (){ console.log(’hello’) }")

hello()

A.5 Object method (Detected)

// object_method.js

var greeter = {
hello: function () {
console.log(’hello’)
}
}

greeter.hello()

A.6 Function method (Detected)

// function_method.js

function greeter() {
this.hello = function () {
console.log(’hello’)
}
}

new greeter().hello()

A.7 As a constructor (Detected)

// constructor.js

function hello() {
console.log(’hello’)
}

new hello()

A.8 Via call() (Detected)

// function_call.js

function greeter() {
this.hello()
}

var x = new function(){
this.hello = function(){
console.log(’hello’)
}
}

greeter.call(x)

A.9 Via apply() (Detected)

// function_apply.js

function greeter() {
this.hello()
}

var x = new function(){
this.hello = function(){
console.log(’hello’)
}
}
greeter.apply(x)

A.10 Self-Invoking functions

// self_invoking.js

(function() {
console.log(’hello’)
})()

