
Combining Static and Dynamic Analysis
to Decompose Monolithic Application

into Microservices

Khaled Sellami1, Mohamed Aymen Saied1(B), Ali Ouni2,
and Rabe Abdalkareem3

1 Laval University, Quebec, QC, Canada
mohamed-aymen.saied@ift.ulaval.ca

2 ETS Montreal, University of Quebec, Montreal, QC, Canada
3 Carleton University, Ottawa, ON, Canada

Abstract. In order to benefit from the advantages offered by the
microservices architectural design, many companies have started migrat-
ing their monolithic application to this newer design. However, due to
the high cost and development time associated to this task, automated
approaches need to be developed to solve these issues.

Solutions that tackle this problem can be classified based on the infor-
mation available for the monolithic application which are often based on
source code or runtime traces. The latter provides a more accurate rep-
resentation of the interactions between the classes within the application
however it often fails to cover all of the classes. On the other hand, the
source code of the application is more readily available and can be used
to extract additional information like semantic meaning of the classes.

The objective of this paper is to provide a hybrid solution that com-
bines both of these approaches in order to take advantage of their strengths
while covering their weaknesses. The proposed solution performs static
and dynamic analysis on the monolithic application based on the available
information and the user’s input. Afterwards, an iterative clustering pro-
cess is applied on the processed data in order to generate the microservices
decomposition. We compare different strategies for combining the static
and dynamic approaches and we evaluate the performance of the hybrid
approach compared to each of the separate approaches on 4monolith appli-
cations. We provide as well a comparison with state-of-the-art solutions.

Keywords: Microservices · Clustering · Legacy decomposition · Static
analysis · Dynamic analysis

1 Introduction

Monolithic architectural styles implemented in the legacy applications often lead
to maintainability issues as these applications evolve and as such fail to meet
user demands or provide their services adequately [4]. Service Oriented Architec-
tures (SOA) have emerged as an alternative when building new software which
tries to answer the problems found in monolithic applications. The microser-
vices architecture [1,13] builds upon the philosophy used in SOAs to utilize a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Troya et al. (Eds.): ICSOC 2022, LNCS 13740, pp. 203–218, 2022.
https://doi.org/10.1007/978-3-031-20984-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20984-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-20984-0_14
Rabe Abdalkareem
Draft



204 K. Sellami et al.

Domain Driven Design (DDD) [8] to build autonomous, fine-grained and scalable
components (microservices) that can function independently. A large number of
developers have sought to adopt this style and migrate their legacy applications.
However, this migration process proved to be costly, lengthy and complex in
many cases, requiring a large amount of time and monetary investment from
these developers and as such served as a barrier to improve their software [10].
Approaches that try to tackle this issue attempt at automating this part of the
process by proposing the set of potential microservices which is called a decom-
position. Each approach tackles this issue in a different way mostly based on
the type of input it utilizes and how it analyzes it. One of the most commonly
used approach relies on the information found within the run-time traces of
the monolithic application [3,6,7] since it provides a more accurate view of the
interactions of the components within this application. However, this approach,
called Dynamic Analysis, requires the availability of enough execution traces to
provide this advantage and, as such, methods that employ it often fail to cover
all of the components within the application. The other most common approach
uses the source code of the legacy application [11,15,16] since it is rare that
this information would be unavailable for a developer that is trying to migrate
his application. In addition, this analysis approach, called Static Analysis, can
cover all of the components within the legacy software and include them in the
decomposition.

In this research, we present a solution that merges Static Analysis and
Dynamic Analysis approaches in order to complement each other by providing
more robust decompositions which take advantage of the run-time traces while
covering the whole application by supplementing the inference phase with the
information extracted from the source code. Our solution analyzes the run-time
traces and the source code independently in order to extract semantic, struc-
tural and dynamic representations of the monolithic application. Afterwards,
we apply an iterative clustering approach that combines representations from
different domains in order to generate a single result in a hierarchical structure
that represents the microservices.

In this paper, we compare different strategies for combining the analysis
approaches and we evaluate our approach in comparison with other baselines in
the literature that tackle problems similar to the microservices decomposition
issue. The results obtained show that our approach improved the coverage of our
proposed decompositions while maintaining Structural Modularity, Conceptual
Modular Quality and Inter Call Percentage metrics that are better or similar to
most of the baselines.

The paper is organized as follows. In Sect. 2, we present the related work
to our research. Afterwards, we showcase a formal formulation of the problem
and the details of our proposed approach in Sect. 3. Then, in the 4th section, we
specify and describe the empirical evaluation of our approach. Subsequently, we
move on to discussing the threats to the validity of this work in Sect. 5. Finally,
we provide a conclusion to the paper, and we outline our future work in Sect. 6.



Combining Static and Dynamic Analysis for Microservices Decomposition 205

2 Related Work

Recent research in the migration process from a monolithic architecture to
a microservices architecture has focused mainly on the decomposition phase
where given a monolithic application, an approach proposes a set of potential
microservices. There has been numerous attempts to automate this task. These
approaches can be categorized by how they process the monolithic application
and how they analyze it.

Some solutions focused on the use of execution traces to represent the legacy
systems. Mono2micro [7] associates execution traces with use cases and then
analyzes them to calculate a shared similarity metric between the classes. Then,
it uses a hierarchical clustering algorithm to suggest the microservices. FoSCI [6]
addresses this problem by proposing a solution that relies on execution traces
and a search-based algorithm to group together the classes of the monolithic
application. The approach CoGCN [3] is based on a graph neural network that
provides the proposed decomposition while outputting the list of outliers. This
approach builds its neural network using the structural data in the source code
and trains the model using the execution traces.

Most other solutions that tackle this problem rely on the source code for
their analysis. hierDecomp [16] analyzes the source code in order to extract the
structural and semantic information within it which is used in conjunction with a
hierarchical DBSCAN algorithm variant to generate the decomposition options.
Bunch [11] is a tool designed to provide an architectural-level view of a software
system by decomposing it and clustering its components using search algorithms
and using only the source code of the application.

Some approaches have tried to represent the monolithic applications using
different sources of information. MEM [9], for example, relies on the source code
and the version control history of the application to generate a graph. It proposes
its microservices by applying a clustering algorithm on this graph. ServiceCutter
[5] takes as input a JSON format of the design documents of the monolithic
application. Using this input, ServiceCutter generates scores for 16 coupling
criteria and generates a weighted graph. The developers can use this graph to
generate a service oriented architecture.

3 Proposed Approach

In this section, we present the details of our solution. We start by defining the
problem we are trying to solve. Afterwards, we showcase an overview of the
proposed approach. Then, we explain in detail the different components used in
this approach.

3.1 Problem Formulation

Given a legacy monolithic application, our approach needs to generate a set of
candidate microservices which is called in this case a decomposition. This task



206 K. Sellami et al.

is achieved by analyzing the source code and execution traces. Even though this
solution can be applied on each one of these inputs individually, we will assume
that both types of information are available for the rest of the paper.

The legacy application is represented as a set of classes C = {c1, c2, ..., cN}
where ci is the class’s id and N is the total number of classes. In addition, given
that dynamic analysis rarely covers all of the classes within the code base, we
define Cd = {c′

1, c
′
2, ..., c

′
Nd

} as the set of classes mentioned within the execution
traces where c′

i ∈ C and Nd ≤ N .
The result of our approach is a hierarchical representation of the suggested

decomposition. It is defined as a list of layers, each representing a level of the
hierarchy. The ith layer is defined as Li = {Mi,1,Mi,2, ...,Mi,Ni

} where Mi,j =
{ci,j,1, ci,j,,2, ..., ci,j,Ni,j

} is a microservice containing Ni,j classes and ci,j,k ∈ C.
If a microservice contains only one class, that class is defined as an outlier. In
addition, for each microservice Mi,j in the ith layer, there exists a microservice
Mi+1,j′ in the (i + 1)th layer where Mi,j ⊆ Mi+1,j′ .

Fig. 1. An example showcasing the result of a microservice decomposition.

Figure 1 showcases an example of a decomposition results for a small subset
of classes within an open-source monolithic Java application called DayTrader1.
The initial layer is defined as a set of microservices each having exactly one class.
The second layer contains 4 microservices since the couple of classes TradeAc-
tion and TradeActionProducer as well as OrderData and OrderDataBean have
been merged into a single microservice each. Since the microservices M1,1 and
M1,3 have only the classes TradeDirect and WtiteListenerImp respectively, both
of these classes are categorized as outliers within this layer. For the final layer,
the microservices M1,1 and M1,2 have merged to create the 3-class microser-
vice M2,1. As such, the suggested decomposition contains 2 microservices and
WriteListenerImp as the only outlier.

Having defined the input and output of our solution, the following subsection
explains the details of our approach as well as the theoretical reasoning behind
it.

1 https://github.com/WASdev/sample.daytrader7.

https://github.com/WASdev/sample.daytrader7


Combining Static and Dynamic Analysis for Microservices Decomposition 207

3.2 Approach Overview

Our approach takes as input the source code and execution traces of a
given monolithic application. Afterwards, three separate and distinct analysis
approaches are executed on this input in order to generate a dataset for each
approach. The three datasets are then fed to the clustering component which
combines them in order to output the decomposition layers. Nonetheless, any
combination of the analysis approaches is possible including having a single one.

The Fig. 2 showcases the different steps taken in order to generate a decom-
position for a given monolithic application. The smaller rectangles within the
figure represent the task done by our solution while the ellipses represent inputs
and outputs.

Fig. 2. An overview of the process used to output the microservices decomposition.

3.3 Extracting the Datasets for Each Approach

Dynamic Calls Matrix. This phase requires as input a list of execution traces
recording the dynamic interactions of the classes. These traces represent the exe-
cution logs. Each trace should represent a call path from the first class until the
last called class. Branches in the call path create another trace. For example, if
during an execution, TradeActionProducer called TradeAction which then called
TradeDirect this would create the first trace: [TradeActionProducer, TradeAc-
tion, TradeDirect ]. If TradeDirect finished its task and returned, and afterwards
TradeAction called OrderData, we would create a second trace: [TradeAction-
Producer, TradeAction, OrderData]. All circular dependencies within the traces
and all duplicates are removed in a pre-processing step. Using these traces, we
generate the dynamic calls matrix. We define the dynamic calls matrix Mdyn as
a NdxNd matrix where each cell is equal to the sum of direct calls and indirect
calls between every couple of classes within the execution traces. For example,
given the following traces: [TradeActionProducer, TradeAction, TradeDirect ] and
[TradeActionProducer, TradeDirect ] and the order of classes is [TradeActionPro-

ducer, TradeAction,TradeDirect ], the call matrix would be equal to :

⎡
⎣
0 1 2
0 0 1
0 0 0

⎤
⎦



208 K. Sellami et al.

Structural Interactions Matrix. We define an interaction between a class A
and a class B when within class A, class B was declared, used as a type for a
method’s parameter, inherited or had one of its methods called. In addition, all
classes acquire the interactions of the class they inherit from.

As such, we start by extracting the metadata within the source code. Any
static analysis tool that can analyze the Abstract Syntax Trees of the appli-
cation’s programming language can be used to extract this information. After-
wards, for each couple of classes, we measure the number of interactions between
them in order to create the structural interactions matrix Mstr which is a NxN
matrix.

Term Frequency - Inverse Document Frequency (TF-IDF) Matrix.
For each of the N classes within the source code, we extract the text used in the
class’ definition. The text includes the class’ name, the comments, the members’
names, the methods’ names, the parameters’ names and the variables’ names
within its methods. Afterwards, for each word in the text, we apply camelcase
case splitting which separates the input string into multiple words based on the
camelcase naming convention. For example, CamelCase will be split into Camel
and Case. Then, we filter out stopwords. Finally, we apply a stemming process
in order to facilitate the detection of similar words. After this pre-processing
step, we acquire a vector of words for each class which is used, in conjunction
with the vocabulary V to measure the TF-IDF values and obtain the TF-IDF
matrix Msem. The final result would be a NxDV matrix where DV represents
the number of words in the vocabulary.

3.4 The Hybrid Clustering Process

The objective of this task is to combine the different matrices generated in
the previous task in order to provide a better decomposition than each of the
approaches separately. Both structural and semantic analysis can utilize simi-
larity functions that generate N × N matrices whose values are in the range
[0,1] where N refers to the total number of classes within the monolithic appli-
cation. For this reason, an intuitive and simple solution would be to calculate
the weighted sum of structural and semantic similarity matrices using a weight
value called alpha in the range [0,1]. For the rest of the paper, we will call this
matrix the static analysis matrix since it’s based on a couple of approaches that
employ static analysis.

On the other hand, the dynamic calls matrix can’t be used to generate a NxN
matrix since it lacks information regarding some of the classes. As such, a sim-
ple weighted sum is not sufficient. In this case, we use a clustering strategy that
combines 2 datasets from different domains in order to generate a single cluster-
ing result introduced in [14]. This approach builds upon a modified DBSCAN
algorithm [12,16].

This algorithm, which we call hierarchical-DBSCAN, executes DBSCAN in
multiple iterations and slowly increments the epsilon hyper-parameter in order



Combining Static and Dynamic Analysis for Microservices Decomposition 209

to loosen the restriction on the condition for grouping together the classes until
a maximum epsilon value, defined by the user, is reached. Each iteration takes
as input additionally the clustering of the previous iteration. As such, the final
result is a list of layers describing the hierarchy of the clusters since each cluster
with a layer contains at least one of the clusters of the previous layer similarly
to the example shown in Fig. 1.

Combination Strategy. The algorithm introduced in [14] proposed two dif-
ferent strategies to combine the datasets. The first strategy involves running the
hierarchical-DBSCAN processes separately and in a sequential manner.

As shown in Fig. 3, we start with one of the datasets, which in our case is
the dynamic call matrix and we execute all of the iterations of the hierarchical
clustering algorithm. At each iteration, we take as input the previous iteration’s
result and the original dataset. Then, for each cluster in the previous layer, we
generate a new sample that represents the cluster depending on an aggregation
function. Afterwards, we calculate a similarity matrix based on the newly created
samples. Using the similarity matrix, we run the DBSCAN algorithm in order
to acquire the new clusters. After incrementing the epsilon parameter, we verify
if it exceeds a maximum threshold called Max epsilon and that is defined by the
user. If it does not, we feed the clustering result to the next iteration. Otherwise,
we feed it as input into the second phase which applies the same process on
the second dataset, its corresponding aggregation function and its Max epsilon
hyper-parameter. Finally, when the second epsilon reaches its maximum, the
acquired clustering layers are returned as the output of the algorithm.

The Fig. 4 showcases the second strategy. In this case, we alternate between
the datasets. We start by running an iteration for the first dataset. Afterwards,
we update the first epsilon value and we feed the result to an iteration of the
second dataset. Similarly, we update the second epsilon value and use the result
as the input of the second iteration of the first dataset. We keep alternating
between both datasets until both epsilon values have reached their respective
maximum values. Finally, we output the clustering layers.

Given the assumption that dynamic analysis data are a better representation
of the application at the cost of a lower class coverage, we always start the
clustering process with the dynamic call matrix as the first dataset.

Fig. 3. A showcase of the sequential
strategy.

Fig. 4. A showcase of the alternating
strategy.



210 K. Sellami et al.

Aggregation Functions. During each iteration and for each different type of
analysis, we take as input the previous clusters and the original dataset. We
define a function capable of aggregating each cluster into a single point. The
newly generated vectors replace the vectors of the clusters’ components within
the dataset. The resulting dataset is then used in the next steps of the current
iteration

For semantic analysis, each cluster is transformed into a normalized vector
representing the mean of the TF-IDF vectors of its classes. Given a cluster C,
we generate the new vector as:

�cC =

∑
ci∈C

�Msem[ci]
|C| (1)

where �Msem[ci] is the vector encoding the class i in the TF-IDF Matrix Msem

As for both structural and dynamic analysis, we use the same aggregation
function which measures the sum of the vectors representing its classes. Given a
cluster C and the label a in {dyn, str}, we generate the new vector as:

�cC =
∑
ci∈C

�Ma[ci] (2)

4 Evaluation

In this section, we conduct experiments in order to evaluate the performance of
our approach in identifying the optimal decomposition.

4.1 Research Questions

We developed our experimental setups in order to answer the following research
questions:

– Q1: What is the best approach for combining different representations and
interpretations of the monolithic application?

– Q2: How does our approach perform when compared to state-of-the-art
microservices decomposition baselines?

4.2 Experimental Setup

Evaluation Metrics. In order to properly evaluate our solution and compare it
with other approaches, we need to define metrics that can quantify the quality of
the generated microservices. However, since we are dealing with a problem that
does not contain true values we can compare with, we will need to evaluate the
quality of the decomposition based on defined criteria that theoretically represent
an acceptable microservices architecture [10]. As such, for this evaluation, we will
compare the proposed decompositions based on how much the decomposition
respects the Domain Driven Design (DDD) philosophy [8], how coherent the



Combining Static and Dynamic Analysis for Microservices Decomposition 211

microservices are, how much coupling exists between them and the granularity
of the microservices

For these reasons, we selected the following evaluation metrics from the lit-
erature that encode in different ways the selected criteria:

– Structural Modularity (SM): [6] is an evaluation metric that can be asso-
ciated with both the cohesion and coupling criteria since it defines a way to
quantify the structural coherence of the microservices as well as the coupling
between then combines them into a single metric. It is defined as follows:

SM =
1
K

K∑
i=1

μi

m2
i

− 1
(K(K − 1))/2

K∑
i�=j

σi,j

2mi mj
(3)

Where K is the number of the extracted microservices, μi is the number
of unique calls between the classes in microservice i, mi is the number of
classes in microservice i and σi,j is the number of unique calls between classes
of microservice i and classes of microservice j. Decompositions with higher
cohesiveness and lower coupling result in higher SM values and as such reflect
a higher structural quality.

– Conceptual Modular Quality(CMQ): [6], quantifies the conceptual qual-
ity of the decomposition. The cohesion and coupling components within this
metric are based on the common textual terms between the classes. As such,
this metric evaluates how focused the contexts represented by the microser-
vices are. Thus, it can be categorized as a metric for evaluating the DDD
aspects.

CMQ =
1
K

K∑
i=1

μ′
i

m2
i

− 1
(K(K − 1))/2

K∑
i�=j

σ′
i,j

2mi mj
(4)

Where K is the number of the extracted microservices, μ′
i is the number of

common terms between the classes in microservice i, mi is the number of
classes in microservice i and σ′

i,j is the number of common terms between
classes of microservice i and classes of microservice j. Higher CMQ values
reflect better decompositions.

– Non-Extreme Distribution (NED): [3] This metric corresponds to the
granularity criteria and introduces a way to quantify this aspect by measuring
the percentage of classes with extremely small or extremely large microser-
vices. It is defined in detail in the following equation:

NED = 1 − |{mi ; 5 < |mi| < 20, i ∈ [1,K]}|
K

(5)

Where K is the number of the extracted microservices and |mi| is the size
of microservice mi. In our evaluation, we selected the values 5 and 20 as the
thresholds for the definition of extreme sizes for all sample applications in
order to be consistent with the literature [2,3,7]. Having high NED often
corresponds to worse results.



212 K. Sellami et al.

– Inter Call Percentage (ICP): [7] is based on the percentage of static calls
between two microservices. This metric quantifies the dependencies between
the microservices and as such can represent the coupling criteria.

ICP =

∑K
i=1,j=1,i �=j

∑
ck∈Mi

∑
cl∈Mj

(log(calls(ck, cl)) + 1))
∑K

i=1,j=1
∑

ck∈Mi

∑
cl∈Mj

(log(calls(ck, cl)) + 1)
(6)

Where K is the number of microservices, Mi is the set of classes in microser-
vice i, calls(ck, cl) is the number of calls from class ck to class cl. Lower
values of ICP correspond to fewer interactions and as such lower coupling
and a better decomposition.

– Coverage (COV): is simply defined as the percentage of classes from the
monolithic application that were included in the proposed decomposition. For
our approach, we won’t consider outlier classes as part of the proposed decom-
position. If we measure this metric for the decomposition example shown if
Fig. 1 which has 5 classes and detected 1 outlier, the result would be equal
to 0.8. On the other hand, if the used approach is only based on run-time
execution trace analysis and only 3 classes were detected, the result for this
approach would 0.6.

Evaluation Applications. We selected 4 monolithic Open-source Java appli-
cations that we evaluate our approach on. The selected applications have varying
scales in order to evaluate how scalable our approach is. The metadata of these
applications are described in the Table 1 where we specify the number of classes
detected using static analysis (SA) and dynamic analysis (DA) separately and
the number of unique interactions found using static analysis.

Table 1. Monolithic applications metadata.

Project Version SLOC # of SA classes # of DA classes # of unique interactions

Plants 1.0 7,347 40 20 123
JPetStore 1.0 3,341 73 37 209
AcmeAir 1.2 8,899 86 23 242
DayTrader(see footnote 1) 1.4 18,224 118 73 378
1https://github.com/WASdev/sample.mono-to-ms.pbw-monolith.
2https://github.com/KimJongSung/jPetStore.
3https://github.com/acmeair/acmeair.

Experimental Process. For each research question, we propose different alter-
natives that we compare their results. However, hyper-parameter choices can sig-
nificantly impact the quality of the output. As such, we applied a grid-search like
approach where we select intervals of possible values for each hyper-parameter
that is not under evaluation and then we generate the decompositions for each

https://github.com/WASdev/sample.mono-to-ms.pbw-monolith
https://github.com/KimJongSung/jPetStore
https://github.com/acmeair/acmeair


Combining Static and Dynamic Analysis for Microservices Decomposition 213

hyper-parameter combination and we measure their evaluation metrics. After-
wards, we filter out the decompositions that have a NED score equal to 1. Since
NED is calculated by the percentage of microservices with extreme sizes, having
a NED score equal to 1 signifies that all the microservices within this decom-
position can be considered invalid and as such this solution should be excluded.
Additionally, we exclude the decompositions that have a coverage lower than a
defined threshold. In this process, we used 0.5 as the threshold.

4.3 Experimental Setup and Results for RQ1

In this research question, we evaluate which combination strategy as described in
the section Combination strategy performs better. Therefore, we start by com-
paring the performance of the sequential strategy and the alternating strategy.

After applying the experimental process and excluding the extreme cases,
we evaluate the influence of the chosen strategy independently from the hyper-
parameters based on the analysis of over 40000 potential decompositions. The
Table 2 shows the median result for each evaluation metric, sample application
and strategy.

Table 2. Comparison of median evaluation results for approach combination strategies.

SM ↗ CMQ ↗ ICP ↘ NED ↘ COV ↗
Alternating Sequential Alternating Sequential Alternating Sequential Alternating Sequential Alternating Sequential

Plants 0.4037 0.4042 0.0385 0.0246 0.1776 0.1752 0.3077 0.3478 0.675 0.65
JPetStore 0.0767 0.0789 0.1647 0.1539 0.3378 0.4641 0.5968 0.5082 0.863 0.8493
AcmeAir 0.093 0.1031 0.3127 0.2757 0.3885 0.5799 0.7229 0.6125 0.8652 0.7753
DayTrader 0.2219 0.227 0.2047 0.1991 0.2425 0.347 0.7103 0.6848 0.8305 0.7627

As we can observe in the table, both methods had very close median results
for the metric SM with the largest difference being around 0.004 for the project
AcmeAir. However, we can see that using the alternating strategy achieved
higher results for all projects. As for ICP, the alternating strategy managed
to lower its values and achieve a worse but very close median score compared to
the sequential strategy. On the other hand, when comparing the scores for NED,
we can see that the alternating had more extreme microservices in all projects
except for Plants. Finally, the coverage it achieved was better in all applications.

We hypothesize that the increased performance observed in this case is due to
the feedback loop between the clustering processes that exists in the alternating
strategy compared to the sequential approach. In the first case, the results of
the dynamic analysis clustering process feed into the static analysis clustering
process at each iteration which should improve the quality of this process and
vice versa. As for the sequential strategy, the results of the dynamic analysis
clustering process are only used as the input for the first iteration of the static
analysis clustering process.



214 K. Sellami et al.

For the following experiments, we will exclusively use the alternating strategy.

Using the alternating strategy when combining the static and dynamic anal-
ysis results generated decompositions that had better metrics, in general,
than those achieved by the sequential strategy decompositions.

4.4 Experimental Setup and Results for RQ2

In order to answer this research question, we selected the six approaches that
tackle the monolithic to microservices decomposition problem or a similar prob-
lem using different methods and views of the monolithic applications. These
approaches are Bunch [11], CoGCN [3], Hierarchical DBSCAN (HierDec)
[16], FoSCI [6], MEM [9] and Mono2micro (M2M) [7].

For each one of the baselines we compare with as well as our approach
(HyDec), we use different ranges of hyper-parameters in order to generate multi-
ple decompositions. Then we calculate all five of the evaluation metrics. Similarly
to the previous research questions, we eliminate all decompositions that have a
NED score equal to 1.

Figure 5 showcases the results of each baseline for each metric and each sam-
ple application in boxplot figures. Our solution is highlighted in red.

Fig. 5. Boxplots of the evaluation results for each baseline. (Color figure online)



Combining Static and Dynamic Analysis for Microservices Decomposition 215

For the sample application Plants, we can observe in the Figure that our
approach achieved the highest CMQ median score while managing to have the
second highest SM median score and second best ICP score. Only MEM and
HierDec managed to have a better score than our approach respectively in SM
and ICP. As for NED, our solution had a better score than MEM, FoSCI and
CoGCN while M2M achieved the lowest NED. Finally, Our approach had the
highest coverage while HierDec had the lowest.

As for JPetStore, our approach managed to achieve the second-best score in
both SM and ICP in which HierDec had the best score. However, our approach
had significantly better NED and coverage score than the rest of the baselines
with only Bunch as an exception for the NED metric. Although HyDec did
not reach the best score for CMQ like in the case of Plants, its score managed
nonetheless to be the third best and is very close to M2M’s score.

When comparing our approach with the rest of the baselines in the AcmeAir
project, we can see that it achieved much better coverage than the rest where
the median is at least twice as much as the second highest coverage. In addition,
it had the highest CMQ and a similar median score to the highest result in ICP
which was acquired by MEM. However, these scores came at the cost of lower
SM values and higher NED values.

Finally, by comparing the results generated for the application DayTrader
using our approach to those created by the other baselines, we can see that
HyDec had the highest coverage, the second highest CMQ score, the second-best
NED score and the third-highest SM score. As for ICP, our approach managed
to have a better score than 3 out of the 7 baselines.

HyDec had the best median COV in all of the sample applications since our
approach does not rely too heavily on the run-time execution traces but instead
combines it with the source in order to improve the results while having enough
information to place as many classes as possible into their adequate microser-
vices. In addition, HyDec managed to be within the 3 best approaches for all
sample applications for the metrics SM, CMQ and ICP with the exception of a
couple of cases: SM for AcmeAir and ICP for DayTrader. These results show-
case that even with the higher coverage, which serves as a disadvantage when
calculating these metrics, our approach still managed to improve over the base-
lines for some cases and remain competitive for the rest. As for NED, the results
varied from one application to another. For example, even though HyDec had a
significantly higher coverage than the baselines, it did not negatively affect the
NED score unlike what happened with AcmeAir. As for the other applications,
HyDec’s NED score was close to the average of the baselines.

Our approach, HyDec, managed to increase the coverage of the decomposi-
tion and to achieve better conceptual and static cohesion and coupling than
the other baselines in most cases.



216 K. Sellami et al.

5 Threats to Validity

For internal threats to validity, the biggest threat lies within the selection eval-
uation metrics and the hyper-parameters for our approach. For the former, we
tried to use five metrics that differ in the criteria that they represent and that
use different inputs, except for the proposed decomposition, to calculate. As for
the latter, we tried to mitigate this threat by varying these hyper-parameters in
order to generate multiple decompositions for the comparison. Particularly for
the comparison with the baselines, we applied the same process and the same
conditions on all of the approaches. The implementation of the approaches could
be a threat to the validity of this research as well. We attempted to mitigate
this issue by extensively testing the code and verifying the obtained results.

In this paper, we evaluated our approach on only four monolithic applica-
tions. Although we tried to select a set of applications that have varying numbers
of classes and interactions, it would be beneficial to our research to evaluate its
performance on additional sample monolithic applications. Our approach uses
the classes of the monolithic application as the granularity level of its representa-
tion. There is a debate within the literature on which granularity level would be
more suitable for the decomposition task [6]. In our case, we decided on the class
level since this research focused mainly on Object-Oriented Languages for which
the classes represent a core concept when coding. Having a more fine-grained
level, like for example at the procedural level, can lead to more coupling issues
and as such more refactoring would be required.

6 Conclusion and Future Work

We presented a microservices decomposition solution that takes as input the
source code of a monolithic application as well as run-time traces of its execu-
tion. The proposed approach analyzes each of the sources individually extracting
semantic and structural information of the classes within the monolithic appli-
cation from the source code and dynamic interactions between the classes from
the execution traces. Then, an iterative clustering process starts which groups
together the classes based on the current analysis type, the results of the previ-
ous layer and the current constraints. The final result is a hierarchical view of
the proposed microservices. The evaluation results showcase that this approach
improves over individual applications of each analysis approach and a compari-
son with state-of-the-art approaches shows that our solution managed to surpass
the coverage of the rest of the baselines while providing decompositions that have
competitive structural and conceptual cohesion and coupling.

In the future, we would like to work on improving the analysis phase of our
approach, and particularly the semantic analysis approach in order to extract
more accurate information from the source code of the monolithic applications.
We would like to investigate as well if we can combine information extracted from

Rabe Abdalkareem



Combining Static and Dynamic Analysis for Microservices Decomposition 217

other sources like the version control history or the documentation. Finally, it
would be interesting to study the impact of prioritizing the domain relationship
between the classes over the structural and dynamic interactions and find a way
to evaluate whether these solutions would be more beneficial.

References

1. Benomar, O., Abdeen, H., Sahraoui, H., Poulin, P., Saied, M.A.: Detection of
software evolution phases based on development activities. In: 2015 IEEE 23rd
International Conference on Program Comprehension (2016)

2. Bittencourt, R.A., Guerrero, D.D.S.: Comparison of graph clustering algorithms
for recovering software architecture module views. In: Proceedings of the European
Conference on Software Maintenance and Reengineering, CSMR (2009)

3. Desai, U., Bandyopadhyay, S., Tamilselvam, S.: Graph neural network to dilute
outliers for refactoring monolith application (2021)

4. Fritzsch, J., Bogner, J., Wagner, S., Zimmermann, A.: Microservices migration
in industry: Intentions, strategies, and challenges. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (2019)

5. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6_12

6. Jin, W., Liu, T., Cai, Y., Kazman, R., Mo, R., Zheng, Q.: Service candidate iden-
tification from monolithic systems based on execution traces. IEEE Trans. Softw.
Eng. 47(5), 987–1007 (2019)

7. Kalia, A.K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., Banerjee, D.:
Mono2micro: a practical and effective tool for decomposing monolithic java applica-
tions to microservices. In: ESEC/FSE 2021. Association for Computing Machinery
Inc (2021)

8. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2017)

9. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: Proceedings - ICWS 2017. Institute of Electrical and
Electronics Engineers Inc (2017)

10. Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.T., Dustdar, S.:
Microservices: migration of a mission critical system. IEEE Trans. Serv. Comput.
14(5), 1464–1477

11. Mitchell, B.S., Mancoridis, S.: On the automatic modularization of software sys-
tems using the bunch tool. IEEE Trans. Softw. Eng. 32(3), 193–208 (2006)

12. Saied, M.A., Ouni, A., Sahraoui, H., Kula, R.G., Inoue, K., Lo, D.: Improving
reusability of software libraries through usage pattern mining. J. Syst. Softw. 145,
164–179 (2018)

13. Saied, M.A., Raelijohn, E., Batot, E., Famelis, M., Sahraoui, H.: Towards assisting
developers in API usage by automated recovery of complex temporal patterns. Inf.
Softw. Technol. 119, 106213 (2020)

14. Saied, M.A., Sahraoui, H.: A cooperative approach for combining client-based and
library-based API usage pattern mining. In: 2016 IEEE 24th International Con-
ference on Program Comprehension (ICPC) (2016)

https://doi.org/10.1007/978-3-319-44482-6_12


218 K. Sellami et al.

15. Sellami, K., Ouni, A., Saied, M.A., Bouktif, S., Mkaouer, M.W.: Improving
microservices extraction using evolutionary search. Inf. Softw. Technol. 151,
106996 (2022)

16. Sellami, K., Saied, M.A., Ouni, A.: A hierarchical dbscan method for extracting
microservices from monolithic applications. In: The International Conference on
Evaluation and Assessment in Software Engineering 2022. Association for Com-
puting Machinery (2022)


	Combining Static and Dynamic Analysis to Decompose Monolithic Application into Microservices*-12pt
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Problem Formulation
	3.2 Approach Overview
	3.3 Extracting the Datasets for Each Approach
	3.4 The Hybrid Clustering Process

	4 Evaluation
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Experimental Setup and Results for RQ1
	4.4 Experimental Setup and Results for RQ2

	5 Threats to Validity
	6 Conclusion and Future Work
	References


