
Using Others’ Tests to Identify Breaking Updates
Suhaib Mujahid

Data-driven Analysis of Software (DAS) Lab
Dept. of Computer Science and Software Engineering

Concordia University
Montreal, Quebec, Canada
s_mujahi@encs.concordia.ca

Rabe Abdalkareem
Software Analysis and Intelligence Lab (SAIL)

School of Computing
Queen’s University

Kingston, Ontario, Canada
abdrabe@gmail.com

Emad Shihab
Data-driven Analysis of Software (DAS) Lab

Dept. of Computer Science and Software Engineering
Concordia University

Montreal, Quebec, Canada
eshihab@encs.concordia.ca

Shane McIntosh
Software Repository Excavation and Build Eng. Labs

Dept. of Electrical and Computer Engineering
McGill University

Montreal, Quebec, Canada
shane.mcintosh@mcgill.ca

ABSTRACT

The reuse of third-party packages has become a common practice
in contemporary software development. Software dependencies are
constantly evolving with newly added features and patches that
fix bugs in older versions. However, updating dependencies could
introduce new bugs or break backward compatibility. In this work,
we propose a technique to detect breakage-inducing versions of
third-party dependencies. The key insight behind our approach
is to leverage the automated test suites of other projects that de-
pend upon the same dependency to test newly released versions.
We conjecture that this crowd-based approach will help to detect
breakage-inducing versions because it broadens the set of realistic
usage scenarios to which a package version has been exposed. To
evaluate our conjecture, we perform an empirical study of 391,553
npm packages. We use the dependency network from these packages
to identify candidate tests of third-party packages. Moreover, to
evaluate our proposed technique, we mine the history of this de-
pendency network to identify ten breakage-inducing versions. We
find that our proposed technique can detect six of the ten studied
breakage-inducing versions. Our findings can help developers to
make more informed decisions when they update their dependen-
cies.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
Risk management; Software version control; Software libraries and

repositories; Software configuration management and version con-
trol systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387476

KEYWORDS

JavaScript, Node.js, Empirical Studies, Software Quality, Software
Ecosystems, Software Testing

ACM Reference Format:

Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh.
2020. Using Others’ Tests to Identify Breaking Updates . In 17th International
Conference onMining Software Repositories (MSR ’20), October 5–6, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3379597.3387476

1 INTRODUCTION

Today’s software systems are large and complex. Many of these
software systems are not built from scratch, but rather leverage
others’ code that has been built in the past to accelerate their own
development. One particular driver of this code reuse is the growing
popularity of software ecosystems such asNode.js Package Manager
(npm),1 which provides a platform for developers to share their own
and use others’ code. Thus, developers commonly publish their
reusable code as packages on npm, which can be used in current and
future projects developed by members of the npm ecosystem [35].

Code reuse has many advantages, including allowing software
systems to be developed faster, include richer features, and even
achieve higher quality [1, 2]. However, this often comes at an in-
creased cost of having to manage these dependencies [21]. Specif-
ically, as the software evolves (and its dependencies do as well),
updating these dependencies can become more risky [5, 9, 12].

The question of whether one should update to the newest re-
leased version is an important development decision. On the one
hand, updating means that developers will get the newest features
and important patches [8, 11]. On the other hand, the fear of an
update breaking existing functionality often lingers on the minds
of developers, making them resort to version pinning their depen-
dencies, or other suboptimal solutions [10, 19, 38].

To ensure the stability and quality of newly released dependen-
cies, developers often run their own tests. This has proven to be
a good solution and some tools (e.g., Greenkeeper2) support the

1https://www.npmjs.com
2https://greenkeeper.io

https://doi.org/10.1145/3379597.3387476
https://doi.org/10.1145/3379597.3387476
https://doi.org/10.1145/3379597.3387476
https://www.npmjs.com
https://greenkeeper.io

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh

automation of such approaches. However, in many cases, develop-
ers are still forced to “roll back” updates to packages because they
introduce regression in their system functionality. Indeed, Mirhos-
seini and Parnin [21] found that there is a need for new techniques
to increase the confidence in automated dependency updates.

To tackle the aforementioned issues, we set out to leverage knowl-
edge from the crowd to provide insights about the risk of a newly
released version of a package. Specifically, we propose a technique
that runs the tests of other projects that depend on a specific version
and use their test outcome(s) as crowd-sourced indicators of the
risk of adopting a newly released package.

The technique runs tests from dependent projects before and
after updating a target dependency from a prior version to a newer
version. Unless an update is intentionally breaking backwards com-
patibility (e.g., a major release), the tests from the prior version
should continue to pass in the newer version [25, 30].

To detect breakage-inducing versions, we execute the tests of
dependent projects that depend on the prior version of the target
dependency. For those tests that pass on the prior version, we re-
execute them after updating the target dependency to the newer
version. Tests that pass the execution on the prior version but not
the execution on the newer version may indicate that the newer
version has introduced a breakage.

To evaluate the proposed technique, we perform an empirical
study of ten cases where an upgrade was rolled back because of a
breakage-inducing version. Our study evaluates: 1) the coverage
of the tests from other dependent projects and 2) the ability of the
technique to indicate potential problems with a newer version of a
target dependency.

We find that the tests from other dependent projects have varying
test coverage, and in some cases, this coverage can be as high as 55%.
Also, we find that of the 10 cases where a dependency was rolled
back, tests from other dependent projects were able to indicate a
failure 60% of the time.
Our work makes the following contributions:

• We propose an approach to detect breakage-inducing ver-
sions of third-party packages by leveraging tests from “the
crowd”.
• We perform an empirical study of ten cases of real word
breakage-inducing versions to demonstrate the effectiveness
of our approach.
• We make our dataset publicly available to facilitate further
research [24].

Paper organization. The remainder of this paper is structured as
follows. We start by describing the background information using a
motivational example in Section 2. Section 3 provides an overview
of the study design. Section 4 presents the results of our research
questions. We discuss our results in Section 5. The related work is
presented in Section 6. Section 7 presents the threats to validity of
our study. Finally, Section 8 draws conclusions.

cheerio

Amy’s Project

Other’s Projects

Dependent Project

Dependent Project(s)

Target Dependency

Prior version: 0.12.4
Newer version: 0.14.0

Figure 1: Motivating example overview and used terminol-

ogy.

2 BACKGROUND AND MOTIVATING

EXAMPLE

To help illustrate how our approach works and the challenges of
updating the dependencies in the context of the npm ecosystem, we
provide a simple motivating example.

Amy is as a web developer that is responsible for developing and
maintaining web applications for three projects in her company.
Her projects depend on open source projects from npm to leverage
backend and frontend functionalities for her company’s applica-
tions. Each of the applications uses on average 50 npm dependencies.
As with many packages on npm, the dependencies she uses get up-
dated frequently. Amy wants to be more proactive in managing
her software dependencies, so she uses Greenkeeper, a tool that
automatically checks for dependency updates. If a dependency has
a newer version available, Greenkeeper updates the dependency to
the newer version and runs the tests that Amy wrote for her appli-
cation. If the newer version passes the tests, Greenkeeper creates a
pull request to update the dependency.

One day, Amy started to receive complaints from her applica-
tion’s users about unexpected behaviour. When she debugged the
issue, she found that a recent change that she made by updating to
a newer version (0.14.0) of the cheerio dependency introduced
the issue. Even though all tests passed, the tests that Amy wrote
were not able to detect the breakage behaviour in the updated
dependency - the tests simply did not cover the case causing the
unexpected behaviour. The immediate solution was to rollback the
dependency update to the prior version (0.12.4). Even though this
procedure fixes the issue, Amy starts to become concerned about
breakage-inducing versions. Through a quick web search, Amy
finds that she is not the only one that suffers from this breakage-
inducing version problem.

Our proposed technique aims to help developers like Amy, be
more confident when they update their dependencies. In this ex-
ample, Amy’s tests did not detect the breakage-inducing version,
however, as we illustrate in Figure 1, Amy is not the only one
that uses the target dependency. Other developers also use the
same dependency in their projects. If Amy’s tests failed to detect
the breakage-inducing version, other’s tests may have potentially
caught that breakage-inducing version. When a newer version of a
dependency is out, why not wait until other developers update to
the newer version and based on their test results determine whether

Using Others’ Tests to Identify Breaking Updates MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

or not we should update. If the newer version breaks others’ code,
there is a high chance that it may break Amy’s code as well.

Our technique simulates something similar, but at a very high
level. Rather than waiting for others to update, we update the
target dependency from the prior version to the newer version
for the dependent projects that use the target dependency and
check whether it breaks their tests or not. If the update breaks
the tests, we flag the newer version of the target dependency as a
breakage-inducing version. Even thoughwhenwemark a version as
a breakage-inducing version, it may not mean it will be a breakage-
inducing version for every target dependency, however it means
that newer version might be risky since it broke other’s tests. Hence,
Amy, for example, should be careful when she wants to update to
this specific newer version.

3 STUDY DESIGN

In this section, we discuss the main data used in our study and its
collection process.

3.1 Corpus of Candidate Packages

Since the main goal of our study is to detect breakage-inducing
versions of packages in npm, we first collect a large dataset of pack-
ages that are published on npm. Even though, the main intent of
packages published on npm is to be used as third-party libraries
by other JavaScript projects, these packages also depend on other
packages to perform their tasks. To perform our study, we retrieve
the list of all packages published on npm thorough its registry [26].
We were able to collect a total of 664,204 of npm packages as March
29th, 2018.

We choose to study packages on npm that arewritten in JavaScript
since 1) wemanually examine the source code changes of some pack-
ages and to give us confidence, we choose a programming language
that the authors have expertise in, 2) JavaScript is one of the most
popular programming languages on GitHub and also npm the most
growing packages management systems in recent years [12, 34]. In
addition, npm has a well structured software ecosystem with a large
amount of packages.

That said, it is essential to highlight that our approach is not lan-
guage or platform dependent and can be applied on dependencies
written in any languages and published on any dependency ecosys-
tem. Figure 2 illustrates the steps used to build our data corpus. We
describe each step in more detail next.

Apply Data Filtering (Step 1). After obtaining the list of 664,204
packages, we want to analyze the commit history and then use the
packages’ tests to detect the breakage-inducing versions. However,
the suggested/common practice on npm is to exclude the tests and
non-production code files from the published packages [27]. To
recover the missed data, we rely on the git repositories of the
packages to retrieve their test code and their development history.
Thus, we filter out packages that do not have a git repository. We
found 391,553 npm packages in our dataset that have a valid link to
their GitHub repository.

To eliminate immature and dummy packages, we filtered out
packages that have less than two commits that touch the package.json
file, which is the dependency configuration file. It is worth men-
tioning that this filtering process is important to allow us to keep

only packages that do update their dependencies. After applying
this filter, we were left with 290,417 repositories to analyze and use
as our set of dependent projects.

Once we obtain the lists of 290,417 GitHub repositories, we ex-
tracted their dependencies and tracked all changes that the de-
velopers performed on their dependency versions. Specifically,
we tracked all commits that touch the package configuration file
(package.json), which we explain next.

ExtractDependencies andVersions (Step 2). Since our approach
relies on identifying dependent projects to test the candidate up-
date of a dependency, we need to identify the dependencies of
the dependent projects. However, dependencies and versions can
change across the history of a project. Thus, we want to collect
these changes for two reasons: 1) to extract dependency downgrade
cases, which indicate problematic updates i.e., breakage-inducing
versions, and 2) to build a precise dependency graph between the
dependent projects and the dependencies based on different points
in the history, which will be used later to select the dependent
projects.

In order to extract the dependencies and their versions across
the history of a project, we analyze all commits that touch the
package.json file, which is a file that npm use it to recognize the
package dependencies and its versions.We use the GitHubGraphQL
API3 to collect all commits that touch the packages.json file for
each project in our dataset. As a result, we collected 4,200,936 com-
mits that touch the package configuration file. On each commit,
we retrieve two versions of the packages.json file, one showing
the file before the commit (FileP) and the other showing the file
after the commit (FileC). We parse the files and extract the depen-
dency list from FileC . For each dependency in FileC , we extract its
version from FileC and FileP . At the end of this process, we were
able to extract more than 53,019,774 dependency records across the
history of the projects.

Identify the Explicit Versions (Step 3).Developers of JavaScript
projects usually do not specify the explicit version number for each
of their dependencies. Instead, it is popular to use version ranges
for their dependencies. Hence, we cannot link these dependency
ranges to a specific version. In such cases, it is not possible to pin
point the exact dependency version that was used. For example, if
the range is 1.2.x and the latest version is 1.2.1, npm will point
the dependency to this version. Later, if a newer version, e.g., 1.2.2,
is released, npm will point the dependency to it, and so forth. npm
ensures that the updates respect the version ranges specified by
developers. For example, if the newer version is 1.3.0, then npm
will not update to it since it does not satisfy the specified version
range 1.2.x.

Thus, to identify the version of a dependency that was used
to satisfy a version range, we map version ranges to the latest
satisfied version that is released before the date of the commit that
introduces FileC . In order to perform this step, we: 1) replicated
the npm registry locally; and 2) built a registry proxy that takes
the commit date as an argument and simulates the registry as if it
was at that specific date. Then, we use the built proxy to intercept
the result from the npm registry and remove versions that are
3https://developer.github.com/v4/

https://developer.github.com/v4/

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh

Identify the
Explicit
Versions

Extract
Dependencies
and Versions

53,019,774
Dependencies

npm
Registry

Apply Data
Filtering

Step 1 Step 2 Step 3

Figure 2: Data collection overview

Table 1: The Selected Ten Downgrading Cases.

Package

Downgraded

From To

ESLint 2.4.0 (^2.2.0) 2.2.0 (∼2.2.0)
Express 3.4.0 3.3.4
Express 4.2.0 (^4.0.0) 3.4.8 (∼3.4.x)
Intl.js 1.2.5 (^1.2.4) 1.2.4
jQuery 2.2.0 (^2.1.1) 2.1.4 (∼2.1.4)
Marked 0.3.5 (^0.3.2) 0.3.3
Marked 0.3.9 (^0.3.6) 0.3.7
Nodemon 1.12.1 (^1.11.0) 1.11.0
Passport 0.3.0 (^0.3.0) 0.2.0
Request 2.83.0 (^2.53.0) 2.81.0

newer (i.e., come after the date of the analyzed snapshot). The
proxy helps us simulate the status of npm result at the snapshot time
(commit date). Using this approach, we were able to determine the
exact version of each dependency, which we later use to determine
dependency down grades and provide us with a precise list of
dependent projects.

3.2 Selection of Case Studies

In order to examine the practicality of our proposed approach, we
want to extract a baseline of breakage-inducing versions. Since the
normal behaviour is upgrading the dependencies, a dependency
downgrade can be a perfect indicator of unusual behaviour i.e.,
upgrades that break the tests of the dependent projects. Thus, in
this study, we resort to use the downgraded cases to select our
studied breakage-inducing versions that have cases of breakage-
inducing versions

For every commit in our dataset, we compare the explicit versions
for the ranges extracted form FileP and FileC . If the explicit version
of the dependency on FileP is greater than the explicit version
on FileC , we consider this as a downgrade case. We were able
to identify 9,046 possible breakage-inducing versions from 3,255
npm dependency packages by analyzing the commits form their
dependent projects and detect dependency downgrades.

To isolate the downgrade behaviour from other changes, we only
kept commits that do not perform any other changes besides the de-
pendency downgrade change. In other words, we select downgrade
cases where the commit only changes one line, which is the line
that changes the dependency version. By adding this constraint,
we were left with 1,880 possible breakage-inducing versions from
909 npm dependency packages.

In addition, to make sure the process correctly identifies cases of
downgrade versions, the first two authors also performed a sanity
check of randomly selected 100 downgrading commits by checking
the commit messages and examining the packages.json. In all
cases, the commit messages confirmed our results that the commits
were only downgrading the dependencies.

Since the number of identified packages is a large number and it
does not make sense to examine all of these cases, we decide to focus
our analysis on cases that we can manage to analyze manually and
perform an in-depth analysis. To evaluate our proposed approach
using different real-word npm dependencies and breakage-inducing
versions, we randomly selected ten downgrade cases to be used as
the baseline in the evaluation of our proposed technique. In the
selected cases, we consider the prior versions that the developers
downgraded from as the breakage-inducing versions and the newer
versions that they downgrade to as the stable versions.

Table 1 presents the ten randomly selected cases. The second
column shows the breakage-inducing versions that the developers
downgrade from as it was specified in FileP (version ranges is
shown in brackets). In the third column, the table shows the versions
that the developer downgrade to, as specified in FileC (version
ranges is shown in brackets). Table 1 shows that the selected cases
belong to eight npm dependency packages that are well-known and
commonly used within the JavaScript developer community.

3.3 Detection of Breakage-Inducing Versions

To detect a breakage-inducing version, we rely on running the
tests of projects that depend on the prior version before and after
updating the target dependency to the newer version.We argue that
the tests of the dependent projects can reveal the breakage-inducing
versions. To do that, we propose an approach that is composed of
three main steps that include, 1) identify the projects that use the
prior version of the target dependency, 2) prioritize the dependent
projects to run sufficient tests, and 3) automatically run the tests of
dependent projects. Figure 3 presents our proposed approach and
next, we explain these steps in more details.

IdentifyDependent Projects.To identify dependent projects that
have candidate tests for our selected ten breakage-inducing ver-
sions, we use the records of explicit package dependencies that we
explained earlier in Section 3.1. To checkout the code on a specific
point in history, i.e., where it depended on a prior version, we re-
trieve all commits that point to that prior version. In most cases, a
project’s repository history can have several commits that point
to the same version. In such case, we choose the first commit that
introduces the prior version. Then, we checkout the work directory
based on that commit.Wewere able to find 5,853 dependent projects
that use the prior version of the selected cases. Finally, we want to

Using Others’ Tests to Identify Breaking Updates MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Selected
Cases

Prioritized
Projects

Build and Test
Based on the

Stable Versions

Update the Target
Dependency and

Run the Tests

✓Pass

✗FailDependencies

ResultsRun Dependent Projects TestsPrioritize
Dependent Projects

Identify
Dependent Projects

List of
Projects

Figure 3: The approach overview.

exclude projects that do not have tests. To do so, we examine the the
package.json file of each project and check whether it specifies a
test script. This process left us with with 3,473 dependent projects
that expose test scripts. Later, we use these scripts to run the the
tests.

PrioritizeDependent Projects.The number of dependent projects
can scale to thousands of projects. Building all of them may add no
value. Therefore, in practice, a budget of number of builds needs
to be specified, which will impact how many dependent projects
projects one can consider. To include the most valuable dependent
projects, for each breakage-inducing version in our case studies,
we order its dependent projects in a queue based on their test cov-
erage percentage. To retrieve the test coverage of the dependent
projects, we rely on the API of the npm search engine (npms).4 If
more than one package has the same test coverage percentage, we
prioritize the package that has a higher ranking score in npms. The
npms scores are based on quality, maintenance and popularity -
more details about how these scores are calculated can be found
on npms [28].

Run Dependent Project’s Tests. To detect breakage-inducing
versions, we need to build the dependent projects, which include
installing their dependencies and running their tests. To perform
this process, we build the dependent projects in an isolated environ-
ment using Docker containers. Our implementation keeps a record
of the output for every stage, the time that each stage spent and
the detailed test coverage reports. We achieve this by performing
the following.

First, for each prior version of our selected cases, we build and
run tests of its dependent projects. Our proposed approach relies
on builds and tests of dependent projects that pass the prior version.
The build requires installing the dependencies. However, the fact
that developers can specify version ranges can be an additional
point of failure. For example, a dependency could have a newer
version that break backward compatibility. If a newer version sat-
isfies the specified version range, our build will install the newer
version which is incompatible. To mitigate the problem, we used
the registry proxy that we implement (Section 3.1) to emulate the
registry as it was on the commit date of FileC . In this case, our
replayed build(s) will install the version or versions that were avail-
able before the commit date. The dependent projects whose tests
are already failing on the stable version are not useful since they
do not provide useful information (and would not provide useful

4https://npms.io

information in a real-life scenario). Therefore, we exclude depen-
dent projects whose builds fail on the prior version. In our case
study, we use a budget of 80 successful builds to be the limit. This
means that if a target dependency passed tests of 80 dependent
projects, we stop running more test and flag its newer version as
non breakage-inducing version. At this budget, we built 1,447 de-
pendent projects from the 3,473 projects in our dataset. Out of all
builds we were able to successfully build 904 cases.

Second, for dependent projects that passed the previous build-
ing and testing stage, we update their prior version of the target
dependency to the newer version. We run the same tests from the
dependent projects based on the newer version and save the result.
Then, we examine the saved results and if a test failed after up-
dating the target dependency from the prior version to the newer
version, we flag that version as a breakage-inducing version. This is
meant to be reported to developers in an effort to help them adopt
a more data-driven decision about updating to a newer version of
their dependencies.

4 CASE STUDY RESULTS

In this section, we present the results of our empirical study with
respect to our two research questions. For each research question,
we present our motivation, approach, results and implications.

RQ1. Do the tests of dependent projects

complement each other in terms of coverage?

Motivation. Previous work showed that JavaScript tests tend to
have low coverage [14]. Therefore, we would like to know if better
test coverage can be achieved by considering the tests of depen-
dent projects. Achieving improved coverage using such tests would
suggest that our technique has the potential to detect additional
breakage-inducing versions. In this research question, we examine
whether the tests of the dependent projects contribute to improving
the test coverage of a package that they depend on.

Approach. To answer this question, we use an approach that de-
pends on measuring how the tests of dependent projects contribute
to cover a target dependency. We use the Istanbul5 tool to mea-
sure test coverage. We configure the tool to track the test execution
for the target dependency. After running all the tests of the depen-
dent projects, we collect the detailed test coverage reports. Then
we aggregate the test report based on the paths of the covered files,
including the percentages of statements, branches, functions, and
lines. In cases where the same file is covered by test code of more
5https://istanbul.js.org

https://npms.io
https://istanbul.js.org

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ● ●

●

●

●

●

0

10

20

30

40

50

es
lin

t 2
.2

.0

ex
pr

es
s 3

.3
.4

ex
pr

es
s 3

.4
.8

int
l 1

.2
.4

jqu
er

y 2
.1

.4

m
ar

ke
d

0.
3.

3

m
ar

ke
d

0.
3.

7

no
de

m
on

 1
.1

1.
0

pa
ss

po
rt

0.
2.

0

re
qu

es
t 2

.8
1.

0

Te
st

 C
ov

er
ag

e
(%

)

Statements Functions Branches

Figure 4: The distribution of test coverage for the studied

cases based on running the tests of their dependent projects.

than one dependent project, we aggregate based on the coverage
map of the file, i.e., we check the coverage map for each statement,
branch, and function, if an element is covered in one report but not
the other, we consider it as a covered element, so we count it only
once. Finally, we measure the increase in test coverage based on the
order of dependent projects that we produce using the prioritization
described in Section 3.1.

Results. Figure 4 shows the distribution of test coverage for each
selected case based on statements, functions and branch test cov-
erage. The tests of dependent projects individually covered, on
median, up to 22% statement test coverage of the target depen-
dency’s code. However, in one particular case (nodemon 1.11.0),
we found one dependent project that covers approximately 50% of
its code. Figure 4 also shows that there is a case (jquery 2.1.4)
where crowd-based testing does not improve test coverage.

We also examine the effect of the number of dependent projects
on the amount of test coverage that they provide. Figure 5 shows
the cumulative statement test coverage achieved by running the
dependent projects’ tests. Overall, we observe that adding more
dependent projects increases the statement test coverage of the
target dependency. Figure 5 shows that eight dependencies have
an increase in the test coverage when we increase the number of
dependent projects. However, the trend of statement test coverage
of most of the dependencies remains stable after running the tests
of approximately 20 dependent projects.

Moreover, we examine the degree to which test coverage is
improved by adding crowd-based test results. Figure 6 shows the
cumulative statement test coverage when the tests of the target
dependency itself and the dependent projects’ tests are combined.

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40
Number of Dependent Project Builds

%
 o

f C
um

ul
at

iv
e

Te
st

 C
ov

er
ag

e

eslint 2.2.0

express 3.3.4

express 3.4.8

intl 1.2.4

jquery 2.1.4

marked 0.3.3

marked 0.3.7

nodemon 1.11.0

passport 0.2.0

request 2.81.0

Figure 5: The cumulative statement test coverage for the se-

lected ten cases based on running the testes of their depen-

dent projects.

Overall, we see that in the majority of the cases (9 out of 10) there
is an improvement in the statement test coverage. In fact, in some
cases, the cumulative coverage reaches as high as approximately
80%. However, in one specific case (jquery 2.1.4), we see that
there is no improvement, we investigate the case and we found
that to run its tests, we need to setup a local server that supports
PHP [16].

It is important to note that the coverage in this RQ is measured
in terms of the covered statements. In addition, we also compared
the percentage of covered statements, branches and functions and
we did not observe a noticeable difference between them.

Implications. The results show that the tests of dependent projects
individually and cumulatively can cover the target dependencies
up to 47% and 55%, respectively. These results highlight the impor-
tance of using the dependent projects to improve the capacity for
detection of breakage-inducing versions. Such an approach could
also improve test generation tools to produce more effective tests
in the context of the ecosystem dependency network.

The dependent projects’ tests can individually cover
23% on median and up to 47% of the code for the target
dependency. However, leveraging the tests of the depen-
dent projects can cover up to 55% of target dependency
code.

RQ2. How effectively can the proposed

technique detect real-world breakage-inducing

versions?

Motivation. In the previous research question, we found that de-
pendent projects can provide tests that cover up to 55% of target

Using Others’ Tests to Identify Breaking Updates MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40
Number of Dependent Project Builds

%
 o

f C
um

ul
at

iv
e

Te
st

 C
ov

er
ag

e

eslint 2.2.0

express 3.3.4

express 3.4.8

intl 1.2.4

jquery 2.1.4

marked 0.3.3

marked 0.3.7

nodemon 1.11.0

passport 0.2.0

request 2.81.0

Figure 6: The cumulative statement test coverage for the se-

lected ten cases based on running the testes of their depen-

dent projects companied with their own tests.

dependency code. In this research question, we set out to see if
using tests provided by dependent projects can catch real-world
breakage-inducing versions.

Approach. To examine the effectiveness of the proposed approach
in detecting breakage-inducing versions, we perform an experiment
using the ten studied examples of breakage-inducing versions that
are shown in Table 1. For each case, we build and run the tests of
dependent projects using the prior version and once again based
on the newer version using our approach described in Section 3.3.
Cases where tests pass on the prior version(s), and have at least
one failure on the newer version are flagged as breakage-inducing
versions.

Results. The build results for all cases are shown in Table 2. Of the
904 successful builds, 314 builds passed the tests on the prior ver-
sion. For each case, the second column shows the number of builds
from dependent projects that proceed to the building stage. The
third column shows the percentage of them that have a successful
build, which range between 37.9% and 93.6%. In the fourth and fifth
columns, we present the count and the percentage of dependent
projects that passed the tests before updating the target depen-
dency. Finally, the sixth column shows the percentage of dependent
projects that failed the tests after updating the target dependency,
which we use in the seventh column to flag if the newer version is
a breakage-inducing version or not.

Table 2 shows that our proposed technique detects six of the
ten studied breakage-inducing versions. For the four cases that our
techniques failed to detect, we performed a manual investigation
to gain insight into the reason why our proposed technique was
not able to detect these cases.
eslint 2.2.0: ESLint is a tool that is used to identify and report
problematic patterns or code that does not adhere to style guidelines

in JavaScript code [37]. The tool is mainly used as a development
dependency, which is not used in the production code. In our ap-
proach, we select the dependent projects based on their production
dependencies. As a result, we were left with a small number of
dependent projects.

In addition, the dependency package has the lowest percentage
(9.5%) of passed tests from its dependent projects in the first testing
stage. Out of the 19 dependent projects that had their tests fail,
16 of them produce the following error (Cannot find module
‘internal/fs’). This error has a known workaround in the Node.js
community. Applying this workaround may have helped, if it was
known and applied in advance. Thus, we were left with only two
dependent projects to test the update based on. Unfortunately, these
two dependent projects only improve coverage by 0.8%, and thus,
are unlikely to detect the breakage-inducing version.
intl 1.2.4: Intl.js is a package with five years of development
history. The package is mostly used in client-side web applications
to support legacy web browsers. Since web applications are not
reusable dependencies by themselves, developers usually do not
publish them on npm. Since we only used the dependent projects
that are published on npm without considering dependent projects
outside npm, we could only find 19 dependent projects for the target
dependency version. Out of the 19 dependent projects, only four of
them had their tests pass on the prior version before updating to
the newer version. Including dependent projects in addition to the
ones from npm (e.g., GitHub or Bitbucket) can help to increase the
population for this case. We plan to investigate this in future work.
jquery 2.1.4: jQuery is a JavaScript library designed to simplify
the client-side scripting of HTML. The package is mainly used to
manipulate the Document Object Model (DOM) in web browser
environments. Previous work showed that the DOM makes it hard
for developers to test effectively [3, 15, 22]. Our result confirms
the finding of a previous study by Fard and Mesbah [14], which
shows that DOM-related tests lack proper coverage. In the case
of jquery 2.1.4, the library test suite itself does not achieve any
test coverage and also the dependent projects do not improve test
coverage. This is due to a missing configuration setup (see RQ1).
Hence, our approach cannot detect any breakage-inducing versions
that is not covered by the test suites of the dependent projects.
nodemon 1.11.0: This case has 21 dependent projects that passed
the tests of the prior version. However, all of them also passed the
tests after updating the newer version. We investigated the case to
figure out why our approach did not flag the case as a breakage-
inducing version. By checking the commit messages for changes
that the developers downgrade from the newer version (nodemon
1.12.1) to the prior version (nodemon 1.11.0), we find that developers
downgrade to the prior version to maintain backward compatibility
with older JavaScript standards (ECMAScript 5 [32]). The following
quote is an example of a commit message.
“Restrict version to pre-1.12 as it includes a dep requiring const’’6

In other words, the newer version of the target dependency de-
pends on a language feature that is not available in older JavaScript
standards (ECMAScript 5). In our experimental setting, we only

6https://github.com/CoderDojo/cp-users-service/commit/
59543709173c3af56baa216318cc4c954639d73b

https://github.com/CoderDojo/cp-users-service/commit/59543709173c3af56baa216318cc4c954639d73b
https://github.com/CoderDojo/cp-users-service/commit/59543709173c3af56baa216318cc4c954639d73b

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh

Table 2: Builds and Tests Summary.

Cases

Number Succeessful Passed First Tests (%) Failed After the Caught as

of Builds Builds (%) (#) (%) Dependency Update Risky Version

eslint 2.2.0 34 61.8 2 9.5 0 No
express 3.3.4 63 54.0 19 55.9 15.8 Yes

express 3.4.8 196 45.9 38 42.7 5.3 Yes

intl 1.2.4 19 63.2 4 33.3 0 No
jquery 0.3.3 364 37.9 42 30.4 0 No
marked 0.3.3 214 67.8 64 44.1 4.7 Yes

marked 0.3.7 73 83.6 28 45.9 7.1 Yes

nodemon 1.11.0 98 77.6 21 27.6 0 No
passport 0.2.0 74 52.7 13 33.3 7.6 Yes

request 2.81.0 312 92.6 83 28.2 2.4 Yes

All 1,447 62.4 314 34.7 4.1 60%

use the latest version of Node.js. Our experiment runs on the EC-
MAScript 6. Hence, downgrades that are performed due to incom-
patibility with ECMAScript 6 cannot detected. Note that this is a
limitation of our experimental setup and not our approach. In the-
ory, if one were to extend the experimental configuration to include
ECMAScript 5 environments, our approach would detect such cases.

Implications. With respect to the mentioned limitations, the re-
sults show that our technique is capable of detecting breakage-
inducing versions in six of the ten real-world examples. The de-
velopers of both of the dependent projects and the dependencies
themselves can benefit from our technique. Developers of depen-
dent projects can use the approach to examine their dependency
versions before applying the updates. Similarly, dependency devel-
opers can use the approach to check if version updates are likely to
introduce regression into their codebases.

The proposed approach was able to detect six of ten real-
world breakage-inducing versions. However, our tech-
nique needs to have enough dependent projects.

5 DISCUSSION

In this section, we discuss various aspects of our technique and
how they might impact the technique’s outcomes.

5.1 Technique Scalability

The first research question suggests that using more dependent
projects to test a target dependency can extend the test coverage
of the target dependency, which increases the chance to detect
breakage-inducing versions. However, running these test cases,
especially when there is a large number of dependent projects, can
introduce a large overhead.

To investigate the scalability of our proposed technique, we
perform an analysis to understand the time required to run the tests.
To do so, we calculate the time required for tests of each dependent
project and compare it to the percentage of dependent projects that
we built. Figure 7 shows the distribution of time consumed to pass
or fail the builds in our case study. We observe that the majority of

10

20

30

40

es
lin

t 2
.2

.0

ex
pr

es
s 3

.3
.4

ex
pr

es
s 3

.4
.8

int
l 1

.2
.4

jqu
er

y 2
.1

.4

m
ar

ke
d

0.
3.

3

m
ar

ke
d

0.
3.

7

no
de

m
on

 1
.1

1.
0

pa
ss

po
rt

0.
2.

0

re
qu

es
t 2

.8
1.

0

Te
st

 R
un

 T
im

e
in

 S
ec

on
ds

Fail Pass

Figure 7: The distribution of the time that tests consume to

pass or fail the builds.

passed builds consume more time than failed ones. Also, Figure 7
shows that the consumed time when the build pass is 66 seconds
on average (median = 9).

Moreover, Figure 8 shows the accumulation of builds over time.
Based on this, we observe that 90% of the builds consume less
than 50 seconds. However, some builds consume over 890 seconds.
Thus, setting a time limit for running builds can reduce the overall
consumed time. For example, in our cases study, considering a time
limit of 50 seconds of the total time, we can build 90% the candidate
cases.

Using Others’ Tests to Identify Breaking Updates MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

10

30

50

70

90

10 30 50 70 90 110 130
Time to Complete in Secounds

%
 o

f D
ep

en
de

nt
 P

ro
je

ct
s

Figure 8: Time in seconds to the cumulative percentage of

dependent projects that completed their tests.

5.2 Failed Builds

The results in Section 4 show that we were not able to build 37.6%
of the candidate builds. Thus, we want to investigate the reasons
behind the failed builds. To do so, the first two authors reviewed
the logs of the failed builds and setup four classification categories.
Then, they manually classified all logs and extracted the main error
message. Based on the manual classification of each build log, we
wrote specific regular expression to ignore the variable parts of the
error messages. Then, we executed the regular expression to catch
similar builds failures and classify them.

The result of the classification process is shown in Figure 9. In
total we classify 543 failed builds. The most common reason (40.8%)
is the failing in satisfy the dependencies. The next more frequent
reason (22.2%) is missing a JavaScript environment requirement. For
example, some projects depend on Yarn7, which is a dependency
manager that uses the npm registry to retrieve the dependencies.
For such cases our setup fails to build and run the tests successfully.

In future work we are planning to mitigate some of these issues
by considering the build configuration of the continous integration
systems, if possible. For example, some of the projects use Travis
CI8, such projects include a configuration that specify pre steps and
environment requirements for the build. For such cases we could
satisfy the missed build requirements and increase the successful
build percentage.

6 RELATEDWORK

In this section, we present the work most related to our study. We
divide the prior work into two main areas; work related to the study
of API breakage changes and API testing.

6.1 Studying API Breakage Changes

Several studies investigated API evolution and stability and pro-
posed techniques to detect breakage changes [13, 17, 23, 36]. Re-
cently, Xavier et al. [36] performed a large-scale analysis on 317
real-world Java libraries with 9K releases, and 260K client projects.

7https://yarnpkg.com
8https://travis-ci.org

Permissions CountWearable AppsHandheld Apps
npm dependencies 222 144

System Configration System Configration 193 456
JavaScript Requirments121 166
Others 7 343

0

50

100

150

200

250

npm
dependencies

System
Configration

JavaScript
Requirments

Others

Th
e

N
um

be
r

of
 F

ai
le

d
B

ui
ld

s

Figure 9: The classification of the failed builds

Their results show that 14.78% of the API changes are incompatible
with previous versions and 2.54% of their clients are impacted. They
also found that libraries with higher frequency of breaking changes
are larger, more popular, and more active. Bogart et al. [4] empiri-
cally studied three software ecosystems, including npm, and found
that fixing bugs, efficiency improvements, and addressing technical
debt are the main reasons for inducing breakage changes API. Also,
Businge et al. [6, 7] studied Eclipse interface usage by Eclipse third-
party plug-ins and evaluate the effect of API changes and non-API
changes. Dig and Johnson [13] proposed a catalog of API breaking
changes and non-breaking changes. As a result, they found that
80% of the changes that break dependent projects are related to
refactoring tasks.

Raemaekers et al. [29] investigate the use of semantic versioning
in Java libraries. They found that breakage changes are prevalent in
Java libraries. Zhong and Mei [39] conducted an empirical study on
API usages focusing on how different types of APIs are used. Their
empirical results showed that single API class usages are mostly
strict orders, while multiple API class usages are more complicated
since they include both strict orders and partial orders. Also, in
recent work by Kula et al. [19], they studied more than 4,600 open
source projects and found that 81.5% of studied projects are keeping
their outdated dependencies libraries.

6.2 API Testing

Mostafa et al. [23] performed an investigation to gain insight on the
behavioral backward incompatibilities of Java libraries. To do that,
they proposed a method that use regression testing of 68 version
pairs of 15 Java libraries, and examine more than 120 real world
bugs. Their results showed that behavioral backward incompati-
bilities are not well understood by libraries developers and rarely
documented. Kim et al. [18] propose a tool called Remi that pre-
dicts high-risk APIs in terms of producing potential bugs in the
dependent projects. The main goal of Remi is to assists developers
to write more test cases for the high risk APIs. Rodríguez-Baquero
and Linares-Vásquez [31] present the use of 43 mutation test op-
erations to test Node.js and JavaScript projects and leverage the
npm platform to run test suites. They found that the proposed op-
erations were able provide a mutation test coverage of 70.59% on
average. Taneja et al. [33] proposed an automated test generation
for database applications using mock objects, demonstrating that

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh

with this technique they could achieve better test coverage. Ab-
dalkareem et al. [1] studied the use of trivial packages on npm and
found that even though developer believe that trivial packages on
npm are well-test, their qualitative analysis showed that only 45%
of the trivial packages have test case written for them.

The work by Mezzetti et al. [20] is closest to ours. In their work,
the authors proposed a technique to detect packages that break
the types of their public interface in the npm ecosystem. The study
leverage the test suites of dependent projects and uses a dynamic
analysis to learn models of the package interface types. Our work
complements the prior work since we propose a technique that
leverage tests from dependent projects to detect semantic and be-
havioural breakage-inducing versions of target dependency.

7 THREATS TO VALIDITY

In this section, we disuses threats to validity that might influence
our study.

7.1 Threats to Internal Validity

Internal validity concerns factors that could have influenced our
analysis and findings. First, to evaluate our technique, we select a
sample of downgraded cases to be examined. However, downgrad-
ing the dependency can be triggered for many different reasons.
Therefore the results can be affected by introducing invalid evalua-
tion cases. To mitigate this threat, we have a restricted approach to
select these cases 1) we selected cases where the commits perform
only one specific change, which downgrades the dependency ver-
sion and 2) we make sure that the commit message of the selected
cases mentions that a dependency downgrade as the main reason
for the change. Second, we randomly selected only ten cases of
breakage-inducing changes. Even though this number seems to be
modest, our analysis shows that using these cases we were able to
systematically evaluate the practicality of our technique. Also, in
the future we plan to perform a large-scale study considering the
lessons learned from our current experiences.

We only use download measurement to prioritize the selected
dependent projects. Other measurements could have been used,
such as number of stars for the project. That said, we believe the
selection of our measurement is right since it gives us a clear indi-
cation of the quality of the dependent projects (low quality projects
will probably not be downloaded much). Finally, to measure the test
coverage that our technique achieves through running the test from
dependent projects, we use the Istanbul tool. Thus, our analysis
heavily relies on the accuracy of the Istanbul tool. That said, its
popularity and common usage gives confidence in our results.

In our experimental evaluation we examine ten cases and our
technique was able to catch 60% of the breakage-inducing ver-
sions. This result is highly dependent on the building of dependent
projects.

7.2 Threats to External Validity

Threats to external validity concern the generalization of our tech-
nique and findings. In our study, we only examine packages and
dependent projects mainly written in JavaScript. Thus our findings
may not generalize to other programming languages. We also exam-
ine packages published on the npm package manager and hosted on

Github. However, using other dependency ecosystems may provide
different result.

To prioritize the selected dependent projects that we use their
tests, we rely on the measurement (i.e., number of downloads)
provided by npms. Thus, our prioritization is heavily impacted by
npms. That said, since npms is the main search engine for npm and
its data has been used in prior work (e.g., [1]), these reasons gives
us confidence in the data provided by npms.

8 CONCLUSION AND FUTUREWORK

Updating dependencies is an essential part of any software project.
However, in open source ecosystems, where anybody can contribute
by publishing reusable packages, the risk associated with updating
dependencies could be problematic [9]. Previous work has shown
that managing dependencies is one of the most cited drawbacks
of using npm packages [1]. In this work, we propose a technique
to detect breakage-inducing versions of third-party dependencies.
The technique leverages tests from dependent projects to warn
software teams about breakage-inducing versions. We evaluate
our technique through an empirical study of 391,553 npm packages.
We use the dependency network from these packages to identify
candidate tests. We find that our proposed technique can detect six
of the ten studied breakage-inducing versions. However, we can
perfom better if we incloude more dependent projects.

REFERENCES

[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad
Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case
Study on Npm. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering (Paderborn, Germany) (ESEC/FSE ’17). Association for ComputingMa-
chinery, New York, NY, USA, 385–395. https://doi.org/10.1145/3106237.3106267

[2] Rabe Abdalkareem, Vinicius Oda, Suhaib Mujahid, and Emad Shihab. 2020. On
the impact of using trivial packages: An empirical case study on npm and pypi.
Empirical Software Engineering 25, 2 (2020), 1168–1204.

[3] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip.
2011. A Framework for Automated Testing of Javascript Web Applications. In
Proceedings of the 33rd International Conference on Software Engineering (Waikiki,
Honolulu, HI, USA) (ICSE ’11). Association for Computing Machinery, New York,
NY, USA, 571–580. https://doi.org/10.1145/1985793.1985871

[4] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to Break an API: Cost Negotiation and Community Values in Three Software
Ecosystems. In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Seattle, WA, USA) (FSE ’16). Association for
Computing Machinery, New York, NY, USA, 109–120. https://doi.org/10.1145/
2950290.2950325

[5] Christopher Bogart, Christian KÃďstner, and James Herbsleb. 2015. When It
Breaks, It Breaks: How Ecosystem Developers Reason about the Stability of
Dependencies. In Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering Workshop (ASEW ’15). IEEE, New York, NY, USA,
86–89. https://doi.org/10.1109/ASEW.2015.21

[6] John Businge, Alexander Serebrenik, andMark G. J. van den Brand. 2012. Survival
of Eclipse third-party plug-ins. In Proceedings of the 28th IEEE International
Conference on Software Maintenance (Trento, Italy) (ICSM ’12). IEEE, New York,
NY, USA, 368–377. https://doi.org/10.1109/ICSM.2012.6405295

[7] John Businge, Alexander Serebrenik, and Mark G. J. van den Brand. 2015. Eclipse
API Usage: The Good and the Bad. Software Quality Journal 23, 1 (March 2015),
107âĂŞ141. https://doi.org/10.1007/s11219-013-9221-3

[8] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. 2015. Track-
ing known security vulnerabilities in proprietary software systems. In Pro-
ceedings of the 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER ’17). IEEE, New York, NY, USA, 516–519. https:
//doi.org/10.1109/SANER.2015.7081868

[9] Alexandre Decan, Tom Mens, and MaÃńlick Claes. 2017. An empirical compar-
ison of dependency issues in OSS packaging ecosystems. In Proceedings of the
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER ’17). IEEE, New York, NY, USA, 2–12. https://doi.org/10.1109/SANER.
2017.7884604

https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/1985793.1985871
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1109/ASEW.2015.21
https://doi.org/10.1109/ICSM.2012.6405295
https://doi.org/10.1007/s11219-013-9221-3
https://doi.org/10.1109/SANER.2015.7081868
https://doi.org/10.1109/SANER.2015.7081868
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604

Using Others’ Tests to Identify Breaking Updates MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

[10] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Evolution of
Technical Lag in the npmPackageDependencyNetwork. In Proceedings of the 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME ’18).
IEEE, New York, NY, USA, 404–414. https://doi.org/10.1109/ICSME.2018.00050

[11] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Impact of
Security Vulnerabilities in the Npm Package Dependency Network. In Proceedings
of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
181–191. https://doi.org/10.1145/3196398.3196401

[12] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2018. An empirical
comparison of dependency network evolution in seven software packaging
ecosystems. Empirical Software Engineering 24, 1 (10 Feb 2018), 384âĂŞ417.
https://doi.org/10.1007/s10664-017-9589-y

[13] Danny Dig and Ralph Johnson. 2006. How Do APIs Evolve&Quest; A Story
of Refactoring. Journal of Software Maintenance 18, 2 (March 2006), 83–107.
https://doi.org/10.1002/smr.328

[14] Amin Milani Fard and Ali Mesbah. 2017. JavaScript: The (Un)Covered Parts.
In Proceedings of the 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST ’17). IEEE, New York, NY, USA, 230–240. https:
//doi.org/10.1109/ICST.2017.28

[15] Amin Milani Fard, Ali Mesbah, and Eric Wohlstadter. 2015. Generating Fixtures
for JavaScript Unit Testing (T). In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (ASE ’15). IEEE Computer
Society, Washington, DC, USA, 190–200. https://doi.org/10.1109/ASE.2015.26

[16] The jQuery Foundation. 2019. jQuery JavaScript Library. https://github.com/
jquery/jquery. (Accessed on 01/20/2019).

[17] Puneet Kapur, Brad Cossette, and Robert J. Walker. 2010. Refactoring References
for Library Migration. ACM SIGPLAN Notices 45, 10 (Oct. 2010), 726–738. https:
//doi.org/10.1145/1932682.1869518

[18] Mijung Kim, Jaechang Nam, Jaehyuk Yeon, Soonhwang Choi, and Sunghun
Kim. 2015. REMI: Defect Prediction for Efficient API Testing. In Proceedings of
the 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy)
(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,
990–993. https://doi.org/10.1145/2786805.2804429

[19] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2017. Do developers update their library dependencies?: An empirical
study on the impact of security advisories on library migration. , 34 pages.
https://doi.org/10.1007/s10664-017-9521-5 arXiv:1709.04621

[20] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type Re-
gression Testing to Detect Breaking Changes in Node.js Libraries. In Proceed-
ings of the 32nd European Conference on Object-Oriented Programming (Ams-
terdam, The Netherlands) (ECOOP ’18), Todd Millstein (Ed.), Vol. 109. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:24. https:
//doi.org/10.4230/LIPIcs.ECOOP.2018.7

[21] SamimMirhosseini and Chris Parnin. 2017. Can Automated Pull Requests Encour-
age Software Developers to Upgrade Out-of-date Dependencies?. In Proceedings
of the 32Nd IEEE/ACM International Conference on Automated Software Engineer-
ing (Urbana-Champaign, IL, USA) (ASE ’17). IEEE Press, Piscataway, NJ, USA,
84–94. https://doi.org/10.1109/ASE.2017.8115621

[22] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2015. JSEFT: Auto-
mated Javascript Unit Test Generation. In Proceedings of the 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST ’15). IEEE, New
York, NY, USA, 1–10. https://doi.org/10.1109/ICST.2015.7102595

[23] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. A Study on Behav-
ioral Backward Incompatibility Bugs in Java Software Libraries. In Proceedings of
the 39th International Conference on Software Engineering Companion (ICSE-C ’17).
IEEE, New York, NY, USA, 127–129. https://doi.org/10.1109/ICSE-C.2017.101

[24] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. 2019.
Dataset: Using Others’ Tests to Avoid Breaking Updates. https://doi.org/10.5281/
zenodo.2549129

[25] npm Documentation. 2018. How to use semantic versioning. https://docs.npmjs.
com/getting-started/semantic-versioning

[26] npm Documentation. 2019. npm-registry | npm Documentation. https://docs.
npmjs.com/misc/registry. (Accessed on January 21, 2019).

[27] npm Documentations. 2018. How to publish and update a package. https:
//docs.npmjs.com/getting-started/publishing-npm-packages

[28] npms. 2016. About npms. https://npms.io/about. (Accessed on 19 April 2018).
[29] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2014. Semantic Version-

ing versus Breaking Changes: A Study of the Maven Repository. In Proceedings
of the 14th International Working Conference on Source Code Analysis and Manip-
ulation (Victoria, BC, Canada) (SCAM ’14). IEEE, New York, NY, USA, 215–224.
https://doi.org/10.1109/SCAM.2014.30

[30] Steven Raemaekers, Arie vanDeursen, and Joost Visser. 2017. Semantic versioning
and impact of breaking changes in the Maven repository. Journal of Systems and
Software 129 (2017), 140 – 158. https://doi.org/10.1016/j.jss.2016.04.008

[31] Diego Rodríguez-Baquero and Mario Linares-Vásquez. 2018. Mutode: Generic
JavaScript and Node.Js Mutation Testing Tool. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA ’18). Association for Computing Machinery, New York, NY,
USA, 372–375. https://doi.org/10.1145/3213846.3229504

[32] Istvan Sebestyen. 2009. Ecma International finalises major revision of EC-
MAScript. http://www.ecma-international.org/news/PressReleases/PR_Ecma_
finalises_major_revision_of_ECMAScript.htm. (Accessed on 01/22/2019).

[33] Kunal Taneja, Yi Zhang, and Tao Xie. 2010. MODA: Automated Test Generation
for Database Applications via Mock Objects. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (Antwerp, Belgium)
(ASE ’10). Association for Computing Machinery, New York, NY, USA, 289–292.
https://doi.org/10.1145/1858996.1859053

[34] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Integra-
tion in GitHub. In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Ma-
chinery, New York, NY, USA, 805–816. https://doi.org/10.1145/2786805.2786850

[35] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories (MSR ’16). Association for
Computing Machinery, New York, NY, USA, 351–361. https://doi.org/10.1145/
2901739.2901743

[36] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: A large-scale study. In Proceedings of
the 24th International Conference on Software Analysis, Evolution and Reengineering
(Klagenfurt, Austria) (SANER ’17). IEEE, New York, NY, USA, 138–147. https:
//doi.org/10.1109/SANER.2017.7884616

[37] Nicholas C. Zakas. 2018. About - ESLint - Pluggable JavaScript linter. https:
//eslint.org/docs/about/. (Accessed on 19 April 2018).

[38] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús
González-Barahona. 2018. An Empirical Analysis of Technical Lag in npm
Package Dependencies. In New Opportunities for Software Reuse, Rafael Capilla,
Barbara Gallina, and Carlos Cetina (Eds.). Springer International Publishing,
Cham, 95–110. https://doi.org/10.1007/978-3-319-90421-4_6

[39] Hao Zhong and Hong Mei. 2018. An Empirical Study on API Usages. IEEE
Transactions on Software Engineering 45, 4 (December 2018), 319–334. https:
//doi.org/10.1109/TSE.2017.2782280

https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1002/smr.328
https://doi.org/10.1109/ICST.2017.28
https://doi.org/10.1109/ICST.2017.28
https://doi.org/10.1109/ASE.2015.26
https://github.com/jquery/jquery
https://github.com/jquery/jquery
https://doi.org/10.1145/1932682.1869518
https://doi.org/10.1145/1932682.1869518
https://doi.org/10.1145/2786805.2804429
https://doi.org/10.1007/s10664-017-9521-5
http://arxiv.org/abs/1709.04621
https://doi.org/10.4230/LIPIcs.ECOOP.2018.7
https://doi.org/10.4230/LIPIcs.ECOOP.2018.7
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ICST.2015.7102595
https://doi.org/10.1109/ICSE-C.2017.101
https://doi.org/10.5281/zenodo.2549129
https://doi.org/10.5281/zenodo.2549129
https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/misc/registry
https://docs.npmjs.com/misc/registry
https://docs.npmjs.com/getting-started/publishing-npm-packages
https://docs.npmjs.com/getting-started/publishing-npm-packages
https://npms.io/about
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1145/3213846.3229504
http://www.ecma-international.org/news/PressReleases/PR_Ecma_finalises_major_revision_of_ECMAScript.htm
http://www.ecma-international.org/news/PressReleases/PR_Ecma_finalises_major_revision_of_ECMAScript.htm
https://doi.org/10.1145/1858996.1859053
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1109/SANER.2017.7884616
https://doi.org/10.1109/SANER.2017.7884616
https://eslint.org/docs/about/
https://eslint.org/docs/about/
https://doi.org/10.1007/978-3-319-90421-4_6
https://doi.org/10.1109/TSE.2017.2782280
https://doi.org/10.1109/TSE.2017.2782280

	Abstract
	1 Introduction
	2 Background and Motivating Example
	3 Study Design
	3.1 Corpus of Candidate Packages
	3.2 Selection of Case Studies
	3.3 Detection of Breakage-Inducing Versions

	4 Case Study Results
	5 Discussion
	5.1 Technique Scalability
	5.2 Failed Builds

	6 Related Work
	6.1 Studying API Breakage Changes
	6.2 API Testing

	7 Threats to Validity
	7.1 Threats to Internal Validity
	7.2 Threats to External Validity

	8 Conclusion and Future work
	References

